Cho một điểm M nằm trong góc xOy. Một đường thẳng d đi qua M cắt hai cạnh của góc ở A và B. CMR \(\dfrac{1}{S_{OMB}}+\dfrac{1}{S_{OMA}}\)không phụ thuộc vào vị trí của đường thẳng d
Cho một điểm M nằm trong góc xOy. Một đường thẳng d đi qua M cắt hai cạnh của góc ở A và B. CMR tổng \(\dfrac{1}{S_{OMA}}+\dfrac{1}{S_{OMB}}\) không phụ thuộc vào vị trí của đường thẳng d.
Cho điểm M nằm trong góc xOy. 1 đường thẳng d đi qua M cắt Ox, Oy lần lượt tại điểm A,B. Chứng minh :
\(\frac{1}{S_{\Delta OMA}}+\frac{1}{S_{\Delta OMB}}\) không phụ thuộc vào vị trí của d
Trong mặt phẳng tọa độ Oxy, cho (P):y= \(-\dfrac{1}{4}x^{2}\) Gọi M là điểm thuộc (P) có hoành độ x=2. Lập pt đường thẳng đi qua điểm M đồng thời cắt trục hoành và trục tung lần lượt tại 2 điểm phân biệt A và B sao cho \(S_{OMA}=2S_{OMB}\)
Ta có \(M\left(2;-1\right)\)
Gọi phương trình đường thẳng d qua M có dạng: \(y=ax+b\)
\(\Rightarrow-1=2a+b\Rightarrow b=-2a-1\)
\(\Rightarrow y=ax-2a-1\)
Để d cắt 2 trục tọa độ \(\Rightarrow a\ne\left\{0;-\dfrac{1}{2}\right\}\)
\(\Rightarrow A\left(\dfrac{2a+1}{a};0\right)\) ; \(B\left(0;-2a-1\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2a+1}{a}\right|\) ; \(OB=\left|y_B\right|=\left|2a+1\right|\)
Ta có: \(S_{OMA}=\dfrac{1}{2}\left|y_M\right|.OA=\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|\)
\(S_{OMB}=\dfrac{1}{2}\left|x_M\right|.OB=\left|2a+1\right|\)
\(\Rightarrow\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|=\left|2a+1\right|\Leftrightarrow\dfrac{1}{2\left|a\right|}=1\Rightarrow\left[{}\begin{matrix}a=\dfrac{1}{2}\\a=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Phương trình: \(y=\dfrac{1}{2}x-2\)
cho góc xOy khác góc bẹt và 1 điểm M nằm bên trong góc. Qua M kẻ đường thẳng d cắt cạnh Ox tại A và cắt Oy tại B. Tìm vị trí của điểm M để tam giác OAB có diện tích nhỏ nhất
cho góc xOy khác góc bẹt và 1 điểm M nằm bên trong góc. Qua M kẻ đường thẳng d cắt cạnh Ox tại A và cắt Oy tại B. Tìm vị trí của điểm M để tam giác OAB có diện tích nhỏ nhất
cho góc xAy , điểm bất kì O trong góc đó. 1 đường thẳng qua O cắt Ax,Ay tại B,C. chứng minh \(\dfrac{1}{S_{AOC}}\) +\(\dfrac{1}{S_{AOB}}\) không đổi
Cho đường tròn O đường kính AB. Lấy M thuộc đường tròn ( M khác A,B) gọi C là điểm đối xứng của B qua A. Đường thẳng d qua C và vuông góc vớ AB, đường thẳng MB cắt đường thẳng d tại điểm D. CM:
a. Tứ giác ACDM nội tiếp
b. BM.BD không phụ thuộc vào vị trí của M
Cho tam giác ABC và điểm M nằm trong tam giác. Qua M kẻ đường thẳng DE, IJ, FG tương ứng song song với các cạnh BC, CA, AB (G, I thuộc BC; E, F thuộc CA; D, I thuộc AB). Chứng minh: \(S_{AIMF}+S_{BGMD}+S_{CEMJ}\le\dfrac{2}{3}S_{ABC}\)
Cho \(\Delta ANM\) , đường thẳng d // AM cắt NA ở B, cắt NM ở C. Qua C dựng đường thẳng song song với NA, đường thẳng này cắt AM ở D.
a) Chứng minh: \(S_{\Delta BDC}\le\dfrac{1}{4}S_{\Delta ANM}\)
b) Tìm vị trí của đường thẳng d sao cho diện tích \(\Delta BDC\) lớn nhất