Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Tấn Sang
Xem chi tiết
đấng ys
Xem chi tiết
bepro_vn
26 tháng 8 2021 lúc 11:23

lấy pt 1-pt 2 ta có

(x-y)=(y^2-x^2)-y+x

(x-y)(1-x-y+1)=0

=>x=y or x+y=2 thay vào hệ rồi giải tiếp

Akai Haruma
26 tháng 8 2021 lúc 11:29

Lời giải:

Lấy PT $(1)$ trừ PT $(2)$ thu được:

$x^2-y^2=0$

$\Leftrightarrow x=y$ hoặc $x=-y$

Nếu $x=y$ thì HPT \(\Leftrightarrow \left\{\begin{matrix} x=y\\ x=x^2-x+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=y\\ x^2-2x+m=0\end{matrix}\right.\)

Để hpt có nghiệm thì $x^2-2x+m=0$ có nghiệm 

$\Leftrightarrow \Delta'=1-m\geq 0$

$\Leftrightarrow m\leq 1$

Nếu $x=-y$ thì HPT \(\Leftrightarrow \left\{\begin{matrix} x=-y\\ x=x^2+x+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-y\\ x^2+m=0\end{matrix}\right.\)

Để hpt có nghiệm $\Leftrightarrow x^2+m=0$ có nghiệm 

$\Leftrightarrow \Delta=-m\geq 0\Leftrightarrow m\leq 0$

Kết hợp cả 2 TH ta thấy $m\leq 0$ thì hpt có nghiệm.

 

Huyền Trang
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 7:05

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

Kimian Hajan Ruventaren
Xem chi tiết
Lizy
Xem chi tiết
oooloo
Xem chi tiết
Sennn
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:45

Trừ vế cho vế:

\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)

- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)

Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m

Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)

Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)

Ta có:

\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)

\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)

Vậy \(m>16\) thì hệ có 1 nghiệm

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2021 lúc 22:28

Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\ge0\\\sqrt{x+y}=b\ge0\end{matrix}\right.\) \(\Rightarrow x-y=\dfrac{a^2-4b^2}{3}\)

Hệ trở thành:

\(\left\{{}\begin{matrix}a+b=6\\b+\dfrac{a^2-4b^2}{3}=m\end{matrix}\right.\)

\(\Rightarrow6-a+\dfrac{a^2-4\left(6-a\right)^2}{3}=m\)

\(\Leftrightarrow-a^2+15a-42=m\)

Với \(0\le a\le6\Rightarrow-42\le-a^2+15a-42\le12\)

\(\Rightarrow-42\le m\le12\)

Trần Mun
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2024 lúc 20:29

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)

=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)

\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)

\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)

=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)

=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)

=>m(5m+4)=18m-9

=>\(5m^2-14m+9=0\)

=>(m-1)(5m-9)=0

=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)

đấng ys
Xem chi tiết
bepro_vn
24 tháng 8 2021 lúc 20:44

nhân 2vao pt (1) rồi cộng với pt 2 ta có:

x^2+y^2+2xy+5(x+y)=6+m

=(x+y)^2+5(x+y)=6+m

=t^2+5t=6+m

=t^2+5t-6-m

pt co nghiem duy nhat khi delta=0

tự giải =)))))))))))))))))))))))))))))))))