Tìm số dư khi chia ( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) - 2015 cho x2 + 7x -2
Tìm số dư khi chia ( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) - 2015 cho x2 + 7x -2
Ta có : \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-2015\)
\(=\left(x^2+2x+3x+6\right)\left(x^2+4x+5x+20\right)-2015\)
\(=\left(x^2+5x+6\right)\left(x^2+9x+20\right)-2015\)
\(=x^4+5x^3+6x^2+9x^3+45x^2+54x+20x^2+100x+120-2015\)
\(=x^4+14x^3+71x^2+154x-1895\)
\(=\left(x^4+7x^3-2x^2\right)+\left(73x^2+511x-146\right)+\left(7x^3+49x^2-14x\right)-\left(49x^2+343x-98\right)-1847\)
\(=x^2\left(x^2+7x-2\right)+73\left(x^2+7x-2\right)+7x\left(x^2+7x-2\right)-49\left(x^2+7x-2\right)-1847\)
\(=\left(x^2+73+7x-49\right)\left(x^2+7x-2\right)-1847\)
Vậy số dư khi chia là 1847
.
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15
1) tìm số dư của các phép chia sâu đây :
a) x^4 -2 chia cho x^2+1
b)x^4+x^3+x^2+x chia cho x^2-1
c) x^99+x^55+x^11+x+7 cho x^2+1
2) tìm a để đa thức : x^2-3x+a chia hết cho x+2
4. tìm a và b để x^4+x^3+ax^2+4x+b chi hết cho x^2-2x+2
5. tìm số dư trong phép chia (x+2)(x+3)(x+4)(x+5)+2018 cho x^2 + 7x+3
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
biết rằng đa thức f(x) khi chia cho x-2 có số dư 6067, khi chia cho x+3 có số dư -4043. Tìm đa thức dư khi f(x) chia cho x2+x-6
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
cho 3 số x,y,z biết x và y chia 5 dư 3,z chia 5 dư 4 tìm số dư của (x+y-z) khi chia cho 5 x+y-z=(3+3-4)=2 chia 5 dư 2
Đa thức f(x) khi chia cho x−2 thì dư 5, khi chia cho x−3 thì dư 7, khi chia cho (x−2)(x−3) thì được thương là x2 − 1 và còn dư. Tìm đa thức f(x).
Nhanh lên mọi người mik cần gấp !!!!
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
Câu 1: Cho A= 4 + 22 + 23 +...+2105 . Tính A và tìm số dư của A khi chia cho 32
Câu 2: Chứng minh rằng : 99931999 - 55571995 chia hết cho 5
Câu 3: Cho x1 ; x2 ;....; x2015 là các số tự nhiên thỏa mãn: x1 + x2 +....+ x2015 = 0 và x1 + x2 = x3 + x4 =...= x2013 + x2014 =1 . Tính x2015
Các bạn viết lời giải giùm mình nhé !