Tính GTNN và GTLN của biểu thức: \(A=\frac{\sqrt{x}-2}{x+5}\).
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
tìm GTLN,GTNN của biểu thức
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}\)
tìm GTLN,GTNN của biểu thức
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
Không tồn tại giá trị nhỏ nhất.1) Tìm GTNN của biểu thức \(A=x^2+4y^2+2xy-4x+2y+2015\)
2) Tìm GTLN, GTNN của \(B=\sqrt{x-1}+\sqrt{5-x}\)
3) Tìm GTLN của biểu thức \(M=\frac{2012}{x^2-4x+2016}\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Bài 1: Tìm GTNN và GTLN của biểu thức B=\(\frac{\sqrt{x}}{x+1}\)
Bài 2: Tìm GTNN,GTLN của M=\(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\)
ĐKXĐ: \(x\ge0\)
a/ \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x+1>0\end{matrix}\right.\) \(\Rightarrow B=\frac{\sqrt{x}}{x+1}\ge0\)
\(B_{min}=0\) khi \(x=0\)
\(B-\frac{1}{2}=\frac{\sqrt{x}}{x+1}-\frac{1}{2}=-\frac{x-2\sqrt{x}+1}{x+1}=-\frac{\left(\sqrt{x}-1\right)^2}{x+1}\le0\)
\(\Rightarrow B\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\) khi \(x=1\)
b/ Tương tự câu a \(M_{min}=0\)
\(M=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x+2\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}\le1\)
\(M_{max}=1\) khi \(x=1\)
Tìm GTNN hoặc GTLN của các biểu thức sau:
a)\(A=\frac{3}{x+\sqrt{x}+5}\)
b)\(B=\frac{-5}{x+\sqrt{x}+3}\)
Lời giải:
a) ĐK: $x\geq 0$
Với $x\geq 0$ ta thấy $x+\sqrt{x}+5\geq 5$
$\Rightarrow A=\frac{3}{x+\sqrt{x}+5}\leq \frac{3}{5}$
Vậy $A_{\max}=\frac{3}{5}$ khi $x=0$
b) ĐK: $x\geq 0$
Với $x\geq 0$ thì $x+\sqrt{x}+3\geq 3$
$\Rightarrow B=\frac{-5}{x+\sqrt{x}+3}\geq \frac{-5}{3}$
Vậy $B_{\min}=\frac{-5}{3}$ khi $x=0$