Cho tam giac MNP .MQ là đường trung tuyên .Trên tia đôi cua tia QM lây điểm O ao cho QO=QM chung minh rằng
a)Tam giac QMN=Tam giac QOP
b)MN ong ong PO
cho tam giac MNP vuong tai M co MN =3cm MP= 4cm
a. tinh NP
b,tia phan giac goc N cat canh MP tai Q .ke Q vuong goc NP tai K .chung minh tam giac MNQ =tam giac KNQ
c,goi giao diem cua KQ va MN la H . chung minh tam giac NHP can
d, chung minh MQ nho hon QP <cac ban ve hinh cho minh lun nha .>
a: NP=5cm
b: Xét ΔNMQ vuông tại M và ΔNKQ vuông tại K có
NQ chung
góc MNQ=góc KNQ
Do đo: ΔMNQ=ΔKNQ
c: Xét ΔMQH vuông tại M và ΔKNP vuông tại K có
QM=QK
\(\widehat{MQH}=\widehat{KQP}\)
Do đo;s ΔMQH=ΔKNP
Suy ra: MH=KP
=>NH=NP
hay ΔNHP cân tại N
Cho tam giac ABC can o A. Ke cac duong cao BD va CE. Tren tia doi cua tia BA lay diem M, tren tia doi cua tia CA lay diem N sao cho BM=CN
a, Chung minh tam giac BEC=tam giac CDB, chung minh tam giac ECN=tam giac DBM
c,chung minh ED song song voi MN
Cho tam giac ABC can (AB=AC), O la giao diem trung truc 2 canh ben cua tam giac ABC (O nam trong tam giac). Tren tia doi cua cua cac tia AB va CA ta lay hai diem M,N sao cho AM=CN
a) Chung minh goc OAB= goc OCA
b) Chung minh tam giac AOM= tam giac CON
c) Hai trung truc OM;ON cat nhau tai I. Chung mih OI la tia phan giac cua goc MON.
Cho tam giac ABC can (AB=AC), O la giao diem trung truc 2 canh ben cua tam giac ABC (O nam trong tam giac). Tren tia doi cua cac tia AB va CA ta lay hai diem M;N sao cho AM=CN
a) Chung minh goc OAB= goc OCA
b) Chung minh tam giac OAB= tam giac CON
c) Hai trung truc OM; ON cat nhau tai I. Chung mih OI la tia phan giac cua gic MON.
Cho tam giac ABC can tai A. Goi M la trung diem cua AC. Tren tia doi cua tia MB lay diem D sao cho DM=BM
a. Chung minh tam giac BMC bang tam giac DMA. Suy ra AD // BC
b. Chung minh tam giac ACD la tam giac can
c. Tren tia doi cua tia CA lay E sao cho CA =CE. Chung minh DC di qua trung diem I cua BE
a) Xét tam giác BMC và tam giác DMA có:
AM=AC( M là trung điểm của AC)
AMD^= BMC^( 2 góc đối đỉnh)
BM=MD( gt)
Suy ra: tam giác BMC= tam giác DMA( c.g.c)( đpcm)
b) Xét tam giác DMC và tam giác BMA có:
MB= MD( gt)
DMC^= AMB^( đối đỉnh)
MA=MC( M là trung điểm của AC)
Suy ra: Tam giác DMC= tam giác BMA( c.g.c)
=> AB=DC( 2 cạnh tương ứng)(1)
Mà AB= AC( Tam giác ABC cân tại A)(2)
Từ (1) và (2)
=> DC=AC
=> tam giác ADC cân tại C( đpcm)
c) có tam giác BMC = tam giác DMA(cmt)
=> BM=DM ( 2 cạnh t/ ứ)
=> M là trung điểm của BD
xét tam giác BDE có
EM là trung tuyến ứng vs BD ( M là trung điểm của BD)
CI là trung tuyến ứng vs BE ( I là trung điểm của BE)
mà EM giao vs CI tại C
=> C là trọng tâm
=> DC là trung tuyến ứng vs BE
mà CI cũng là đường trung tuyến ứng vs BE(cmt)
=> DC trùng với CI
=> D,C,I thẳng hàng
vậy DC đi qua trung điểm I của BÉ
Cho tam giac OBC cân ở O. Trên tia đôi của tia CO lây điểm A. Chưng minh AB > AC.
cho tam giac MNP vuong tai M.Goi K la trung diem cua MP.Tren tia doi cua tia KN lay diem H sao cho KN=KH.
Chung minh rang :a)tam giac MKN= tam giac PKH
b)MH=NP va MH//NP
c)HP vuong goc voi MP
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(MKN\) và \(PKH\) có:
\(MK=PK\) (vì K là trung điểm của \(MP\))
\(\widehat{MKN}=\widehat{PKH}\) (vì 2 góc đối đỉnh)
\(KN=KH\left(gt\right)\)
=> \(\Delta MKN=\Delta PKH\left(c-g-c\right).\)
b) Xét 2 \(\Delta\) \(MKH\) và \(PKN\) có:
\(MK=PK\) (như ở trên)
\(\widehat{MKH}=\widehat{PKN}\) (vì 2 góc đối đỉnh)
\(KH=KN\left(gt\right)\)
=> \(\Delta MKH=\Delta PKN\left(c-g-c\right)\)
=> \(MH=PN\) (2 cạnh tương ứng).
=> \(\widehat{HMK}=\widehat{NPK}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(MH\) // \(NP.\)
c) Theo câu a) ta có \(\Delta MKN=\Delta PKH.\)
=> \(\widehat{MNK}=\widehat{PHK}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(MN\) // \(HP.\)
Mà \(MN\perp MP\) (vì \(\Delta MNP\) vuông tại \(M\))
=> \(HP\perp MP\left(đpcm\right).\)
Chúc bạn học tốt!
cho tam giacABC goi M la trung diem cua doan thang AB ; N la trung diem cua doan thang AC ;tren tia doi cua tia MN lay AC .Tren tia doi cua tia NM lay b sao cho NM=ND
A)Chung minh tam giac AMN= tam giac CND ;MB=CD
B) CHUNG MINH MN//BC; MN=1/2BC
C) CHUNG MINH BD di qua trung diem cua MC
Cho tam giac ABC vuong tai A co AB=AC . Goi D la trung diem cua AC . Tren tia doi cua tia DB lay diem E sao cho DB=DE
a) Chung minh : tam giac ADB=tam giac CDE
b) Tren tia doi cua tia AB lay diem I sao cho AD = AI. chung minh : tam giac CDE = tam giac AIC
c) chung minh CI vuong goc EB