Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoài Thu Vũ
Xem chi tiết
HT.Phong (9A5)
5 tháng 8 2023 lúc 9:22

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))

\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)

\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)

\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)

\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)

Hoài Thu Vũ
Xem chi tiết
Hà Quang Minh
5 tháng 8 2023 lúc 12:03

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)

đỗ phương anh
Xem chi tiết
Trần Ngọc Yến Nhi
Xem chi tiết
Hoàng Kiệt
Xem chi tiết
Nguyễn Thị Thanh Tâm
Xem chi tiết
Nguyễn Đức  Minh
23 tháng 5 2021 lúc 12:36

\(\frac{4+\sqrt{X}}{7}\)

Khách vãng lai đã xóa
WonMaengGun
Xem chi tiết
YangSu
7 tháng 8 2023 lúc 20:30

\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dk:x\ge0,x\ne4\right)\\ =\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{-3\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{-3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3}{\sqrt{x}+2}\)

\(b,Q=\dfrac{6}{5}\Leftrightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{6}{5}\Rightarrow15-6\left(\sqrt{x}+2\right)=0\Rightarrow15-6\sqrt{x}-12=0\)

\(\Rightarrow-6\sqrt{x}=-3\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\left(tm\right)\)

Vậy \(x=\dfrac{1}{4}\)thỏa mãn đề bài.

rfgafd khánh
Xem chi tiết
Hoang Nguyen Viet
Xem chi tiết
Phan Văn Hiếu
28 tháng 7 2017 lúc 15:27

\(P=\frac{x+2}{\sqrt{x}^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(P=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

2,

\(A=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{7\sqrt{7}}{7}\)

\(A=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{7-2}+\frac{\left(\sqrt{2}+1\right)}{2-1}-\sqrt{7}\)

\(A=\sqrt{7}-\sqrt{2}+\sqrt{2}+1-\sqrt{7}=1\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

Lùn Tè
Xem chi tiết