Ta có: \(A=\frac{1}{x^2-\sqrt{x}}:\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\frac{1}{x-1}\)
ĐKXĐ: ...
\(A=\frac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}\)
\(=\frac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{x-1}\)