Trong 1 hội trường có 500 ghế ngồi, người ta xếp chúng thành các dãy có số ghế như nhau. Nếu mỗi dãy thêm 3 ghế và bớt đi 3 dãy thì số hế trong hội trường vẫn phải bổ sung 6 chiếc. Hỏi lúc đầu người ta định xếp mấy hàng ghế?
Một hội trường có 500 ghế ngồi, người ta xếp chúng thành các dãy có số ghế như nhau. Nếu mỗi dãy có thêm 3 ghế và bớt đi 3 dãy thì số ghế trong hội trường vẫn phải bổ sung thêm 6 chiếc. Hỏi lúc đầu người ta định xếp bao nhiêu dãy ghế?
Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).
Ta có phương trình: ab=500ab=500 và
⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25
Vậy lúc đầu người ta định xếp 2525 dãy ghế.
Trong hội trường có một số dãy ghế, mỗi dãy ghế qui định một số người ngồi như nhau. Nếu bớt 2 dãy ghế và mỗi dãy ghế ngồi thêm 1 người thì thêm được 8 chỗ. Nếu thêm 3 dãy ghế và mỗi dãy ghế rút đi 1 người thì giảm 8 chỗ. Tính số dãy ghế trong hội trường?
Gọi số dãy ghế là x>2 và số người một dãy ghế là y>1
\(\Rightarrow\) Số người dự định: \(xy\)
Khi bớt 2 dãy ghế và mỗi ghế thêm 1 người thì số người ngồi: \(\left(x-2\right)\left(y+1\right)\)
Khi thêm 3 dãy ghế và mỗi dãy ghế bớt 1 người thì số người: \(\left(x+3\right)\left(y-1\right)\)
Theo bài ra ta có hệ: \(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy+8\\\left(x+3\right)\left(y-1\right)=xy-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=10\\-x+3y=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=5\end{matrix}\right.\)
Vậy có 20 dãy ghế
Một hội trường có 150 ghế được sắp xếp ngồi theo các dãy ghế. Nếu có thêm 71 ghế thì phải kê thêm 2 dãy ghế, mỗi dãy phải thêm 3 ghế nữa. Tính số ghế mỗi dãy lúc đầu trong hội trường.
A. 14 ghế
B. 18 ghế
C. 20 ghế
D. 10 ghế
Gọi số dãy ghế trong hội trường là x (x nguyên dương)
Số ghế của mỗi dãy ghế lúc đầu là 150/x
Số dãy ghế lúc sau là x + 2
Số ghế của mỗi dãy ghế lúc sau là
Đáp án: D
Trong hội trường có 1 số dãy ghế, .mỗi dãy ghế quy định một số chỗ ngồi như nhau. Nếu bớt 2 dãy ghế và mỗi dãy thêm 1 chỗ thì thêm được 8 chỗ. Nếu thêm 3 dãy ghế và mỗi dãy ghế bớt 1 chỗ thì giảm 8 chỗ. Tính số dãy ghế ban đầu của hội trường
Gọi số dãy ghế ban đầu của hội trường là a (dãy), số chỗ ở mỗi dãy ban đầu ở hội trường là b (chỗ)
Nếu bớt 2 dãy ghế và mỗi dãy thêm 1 chỗ thì thêm được 8 chỗ: \(\left(a-2\right)\left(b+1\right)=ab+8\Leftrightarrow ab+a-2b-2=ab+8\Leftrightarrow a-2b-10=0\left(1\right)\)
Nếu thêm 3 dãy ghế và mỗi dãy ghế bớt đi 1 chỗ thì giảm 8 chỗ:
\(\left(a+3\right)\left(b-1\right)=ab-8\Leftrightarrow ab-a+3b-3=ab-8\Leftrightarrow-a+3b+5=0\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}a-2b=10\\-a+3b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=20\\b=5\end{matrix}\right.\)
Vậy số dãy ghế ban đầu của hội trường là 20 dãy
Một phòng họp có 360 người được sắp xếp ngồi trên các dãy ghế, Nếu bớt đi 3 dãy và thêm vào mỗi dãy 4 người thì số người vẫn không thay đổi (giả thiết rằng số người trên mỗi dãy là như nhau). Hỏi lúc đầu phòng họp có mấy dãy ghế.
Gọi số dãy ghế trong phòng họp là x (dãy) (x thuộc N*, x > 3)
Vì trong phòng có 360 người nên mỗi dãy có số người là 360:x
Nếu bớt đi 3 dãy và thêm vào mooic dãy 4 người thì số người vẫn không thay đổi nên ta có phương trình :
(x -3)(360:x +4) = 360
<=> 360 + 4x -1080:x -12 = 360
<=> 4x^2-12x -1080 =0
<=> x^2 - 3 x -270 =0
<=> x^2 - 18x +15x -270 =0
<=> (x -18)(x +15) = 0
<=> x= 18 (thỏa mãn) hoặc x=-15 (loại)
Vậy số dãy trong phòng họp là 18 dãy
ĐÚNG HỘ NHA!!!!
Trong một phòng họp có 80 người ngồi họp được xếp đều ngồi trên các dãy ghế. Nếu ta bớt đi 2 dãy thì mỗi dãy còn lại phải xếp thêm 2 người mới đủ chỗ. Hỏi lúc đầu có bao nhiêu dãy ghế và mỗi dãy ghế có bao nhiêu người ngồi?
Vậy số dãy ghế ban đầu là 10 dãy và số người ngồi trên 1 dãy là 8 người.
Trong một phòng có 144 người họp được sắp xếp ngồi hết trên các dãy ghế ( số người trên mỗi dãy ghế đều bằng nhau). Nếu người ta thêm vào phòng họp 4 dãy ghế nữa, bớt mỗi dãy ghế ban đầu 3 người và xếp lại chỗ ngồi cho tất cả các dãy ghế sao cho số người trên mỗi dãy ghế đều bằng nhau thì vừa hết các dãy ghế. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế?
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
trong 1 phòng có 80 ng họp ,đc sắp xép đều ngồi trên các dayx ghế . nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 2 người ms đủ chỗ . hỏi lúc đầu có mấy dãy ghé và mỗi dãy ghế đc xếp bao nhiêu người ngồi
Gọi x là số dãy ghế; y là số người trên mỗi dãy ghế (x,y>0)
Ta có tổng cộng 80 người nên x*y =80 <=> x =80/y (1)
Nếu bớt đi 2 dãy ghế tức x-2 thì mỗi dãy còn lại phải xếp thêm 2 người tức y+2
Ta có: (x-2)*(y+2) = 80 (2)
Thay (1) vào (2) ta có: 2y^2 +4y -160 =0
<=> y=8 => x=10
Vậy có 10 dãy ghế và có 8 người trên mỗi dãy
Gọi x là số dãy ghế trong phòng họp ( x nguyên ; x>2)
Số người ngồi trên 1 dãy là \(\frac{80}{x}\)(người)
Nếu bới đi 2 dãy thì số dãy ghế còn lại là : x - 2 (dãy)
Số người ngồi trên mỗi dãy sẽ là: \(\frac{80}{x-2}\)(người )
Ta có phương trình :
\(\frac{80}{x-2}-\frac{80}{x}=2\Leftrightarrow\frac{40}{x-2}-\frac{40}{x}=1\Leftrightarrow x^2-2x-80=0\)
Giaỉ phương trình ta được \(x_1=10;x_2=-8\left(lọai\right)\)
Vậy số dãy ghế lúc đầu là 10 dãy và mỗi dãy xếp 8 người ngồi
Một trường học tổ chức buổi lễ tri ân cho học sinh khối 9. Lúc đầu hội trường có 210 ghế xếp thành từng dãy , mỗi dãy có số ghế như nhau. Nhưng thực tế phải xếp thêm 2 dãy ghế và mỗi dãy thêm 2 ghế thì mới đủ chỗ cho 272 học sinh. Hỏi lúc đầu hội trường có bao nhiêu dãy ghế và mỗi dãy có bao nhiêu ghế?
AI GIẢI VỚI HUHU !!!!
MÌNH GIẢI SAI MONG CÁC BẠN THÔNG CẢM VÀ SỬA JUP MIK!!
Gọi số dãy ghế lúc đầu là x (dãy ghế) Đk: x>2
Số ghế mỗi dãy lúc đầu là 210/x(ghế)
dãy ghế lúc sau là x+2(dãy ghế)
Số ghế mỗi dãy lúc sau là 272/x+2(ghế)
Vì thực tế phải xếp thêm mỗi dãy 2 ghế nên ta có pt:
(210/x)-(272/x+2)+2=0(1)
Giải pt (1) ta có: x1=15(TM),x2=14(TM)
Với số dãy ghế lúc đầu là 15 (dãy) suy ra mỗi dãy có số ghế là 14 (ghế)
Với số dãy ghế lúc đầu là 14 (dãy) suy ra mỗi dãy có số ghế là 15 (ghế)