rút gọn A=sin^2 3a + sin^2 (3a-\(\frac{\sqcap}{3}\)) + sin ^2 (3a+\(\frac{\sqcap}{3}\))
cho bít \(\tan a=\frac{2}{3}.\)Tính \(M=\frac{\sin^3a+3\cos^3a}{27\sin^3a-25\cos^3a}\)
Cho biet \(\tan a=\frac{2}{3}\)
Tinh gia tri cua bieu thuc M=\(\frac{\sin^3a+3\cos^3a}{27\sin^3a-25\cos^3a}\)
tan a =2/3
=> đặt sin a = 2x thì cos a = 3x
rồi làm tiếp còn cách khác thì k biết làm
Áp dụng CT nhân ba \(sin\left(3x\right)=3sinx-4sin^3x\) để rút gọn biểu thức sau:
\(S=\dfrac{1}{3}sin^3a+\dfrac{1}{9}sin^3\left(3a\right)+\dfrac{1}{27}sin^3\left(9a\right)+.....+\dfrac{1}{3^n}sin^3\left(3^{n-1}a\right)\)
Tinh A=\(\frac{\sin^3a+\cos^3a}{\sin^3a-\cos^3a}\) biet \(\cot a=3\)
VT = sin3a.cos^3a + sin^3a.cos3a
= sin3a.cosa.cos^2a + sin^2a.sina.cos3a
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin(-2a) + sin4a)
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin4a - sin2a)
= 1/2.sin2a.cos^2a + 1/2.sin4a.cos^2a + 1/2.sin^2a.sin4a - 1/2.sin^2a.sin2a
= 1/2.sin2a.(cos^2a - sin^2a) + 1/2.sin4a.(cos^2a + sin^2a)
= 1/2.sin2a.cos2a + 1/2.sin4a
= 1/4.sin4a + 1/2.sin4a
= 3/4.sin4a = VP
=> đpcm
P/s: Chỉ sợ you ko hiểu
tính giá trị của biểu thức:
B= \(\frac{\sin a+\cos a}{\cos a-sina}\) biết \(\tan a=-2\)
C= \(\sin^2a-\sin a.\cos a+\cos^2a\) biết \(\tan a=\frac{1}{2}\)
F= \(\frac{8\cos^3a-2\sin^3a+\cos a}{2\cos a-\sin^3a}\) biết \(\tan a=2\)
\(sin^2a-sina.cosa+cos^2a\)
\(\Leftrightarrow tan^2a-tana+1\)
Thay tana = 1/2
\(\left(\frac{1}{2}\right)^2-\frac{1}{2}+1=\frac{3}{4}\)
Cho \(tan.a=3\).
Tính \(B=\frac{sin^3a-cos^3a}{sin^3a+cos^3a}\)
Ta có: \(tan\alpha=3=\frac{sin\alpha}{cos\alpha}\Rightarrow sin\alpha=3cos\alpha\)
Suy ra: \(B=\frac{\left(sin\alpha-cos\alpha\right)\left(sin^2\alpha+cos^2\alpha+sin\alpha.cos\alpha\right)}{\left(sin\alpha+cos\alpha\right)\left(sin^2\alpha+cos^2\alpha-sin\alpha.cos\alpha\right)}\)
\(=\frac{2cos\alpha.\left(1+3cos^2\alpha\right)}{4cos\alpha.\left(1-3cos^2\alpha\right)}=\frac{1+3cos^2\alpha}{2.\left(1-3cos^2\alpha\right)}\)
Tính \(D=\frac{\sin a+5\cos a}{\sin^3a-2\cos^3a}\) khi \(\tan a=2\)
\(D=\frac{\frac{sina}{cos^3a}+\frac{5cosa}{cos^3a}}{\frac{sin^3a}{cos^3a}-\frac{2cos^3a}{cos^3a}}=\frac{tana.\frac{1}{cos^2a}+\frac{5}{cos^2a}}{tan^3a-2}=\frac{tana\left(1+tan^2a\right)+5\left(1+tan^2a\right)}{tan^3a-2}\)
Bạn thay số và bấm máy
Rút gọn:
P= \(\frac{sin^3a-cos^3a}{sina-cosa}\)
Q= \(\frac{sin^3x+cos^3x}{sinx+cosx}\)
siṇ̣̣̣̣(3A) + sin(3B) +sin(3C) = 1 - sin(3A/2)sin(3B/2)sin(3C/2)