Cho a,b,c>0 và \(a+2b+3c\ge20\). Tìm minQ = a+b+c + \(\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
cho 3 số thực dương a, b, c thỏa mãn a+2b+3c \(\ge20\). Tìm GTNN của A= a+b+c+\(\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Ta có:
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{20}{4}=13\)
Vậy GTNN của A là 13 đạt được khi \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
_(Từ đầu bài ta có: GTNN của A là 13 đạt được khi: b = 3 và c =
a = 9 - (3 + 4)
= 2
GTNN của A = 3 <=> \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
\(cho\hept{\begin{cases}a,b,c>0\\a+2b+3c\ge20\end{cases}}\)
cm
\(M=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\ge13\)
Ta có
M = (3a/4+3/a) + ( c/4+4/c) + (b/2+9/2b) + a/4 + b/2 + 3c/4 >= 3 + 2 + 3 +(a+2b+3c)/4 >= 13
Dấu bằng xảy ra khi a=2,b=3,c=4
Cho \(a;b;c>0\)và\(a+2b+3c\ge20\)
Tính \(Min\)\(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Cho a,b,c là các số thực dương thỏa mãn \(a+2b+3c\ge20\)
Tìm min \(T=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{3c}\)
Chú ý:Không sửa đề thành \(\frac{4}{c}\)
Cho a, b, c > 0 và \(a+2b+3c\ge20\) . Tìm MIN của :
A = \(a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
a+4/a>=2*căn a*4/a=4
b+9/b>=2*căn b*9/b=6
c+16/c>=2*căn c*16/c=8
=>3a/4+b/2+c/4+3/a+9/2b+4/c>=3+3+2=8
a+2b+3c>=20
=>a/4+b/2+3c/4>=5
=>S>=13
Dấu = xảy ra khi a=2; b=3; c=4
\(cho\) \(a,b,c>0\) và \(a+2b+3c\ge20\)
Tìm Min của \(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Áp dụng Côsi
\(S=\frac{3}{4}a+\frac{3}{a}+\frac{1}{2}b+\frac{9}{2b}+\frac{1}{4}c+\frac{4}{c}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)
\(=3+3+2+5=13\)
Dấu "=" xảy ra khi \(\frac{3a}{4}=\frac{3}{a};\text{ }\frac{b}{2}=\frac{9}{2b};\text{ }\frac{c}{4}=\frac{4}{c};\text{ }a+2b+3c=20\) hay \(a=2;\text{ }b=3;\text{ }c=4\)
Cho a;b;c>0 và \(a^3+b^3+c^3=3\) tìm Max:
\(\frac{a^3}{b-2b+3}+\frac{2b^3}{c^3+a^2-2a-3c+7}+\frac{3c^3}{a^4+b^4+a^2-2b^2-6a+11}\)
Có CTV nào làm đc ko
Cho \(a,b,c>0\) thỏa mãn \(a+2b+3c\ge20\). Tìm GTNN của biểu thức \(S=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
(bài này mình làm được rồi nhưng đăng lên để đố các bạn :)))
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
Cho mình hỏi bài dạng có tìm điểm rơi ko và tìm bằng cách nào vậy?