Tìm nghiện của đa thức sau:M(x)=(9-3x).(-2x+4)
cho đa thức
p(x)=11-2x3+4x4+5x - x4- 2x và q(X)=2x4-x +4-x3 +3x -5x4 +3x3
thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
tính p(X)+Q(X)
tìm nghiện của đa thức h(X)= P(X)+Q(X)
Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến :
\(P\left(x\right)=3x^4-2x^3+3x+11\)
\(Q\left(x\right)=-3x^4+2x^3+2x+4\)
Tính :
\(P\left(x\right)+Q\left(x\right)=3x^4-2x^3+3x+11-3x^4+2x^3+2x+4\)
\(=5x+15\)
Đặt \(h\left(x\right)=0\)
\(\Rightarrow5x+15=0\)
\(\Rightarrow5x=-15\)
\(\Rightarrow x=-3\)
Vậy \(x=-3\) là nghiệm của h(x)
tìm nghiện của đa thức sau
a) A(x) = 2x - 6
b) B(x) =3x + 1/2
a) A(x) = 2x - 6 = 0
=> 2x = 6
=> x = 3
Vậy nghiệm của A(x) là 3.
b) B(x) = 3x + 1/2 = 0
=> 3x = -1/2
=> x = -1/6
Vậy nghiệm của B(x) là -1/6.
Cho đa thức : f(x)= 9-x^5+4x+2x^3+x^2-7x^4
g(x)=x^5-9+2x^2+7x^4+2x^3+3x
a) Tính tổng h(x)= f(x)+g(x)
b)Tìm nghiệm của đa thức h(x)
Cho 2 đa thức : P(x) = 3x^3 - 2x + 7 + x^2 + 7x + 8 và Q(x) = 2x^2 - 3x^3 + 4 - 3x^2 - 9
a , sắp xếp 2 đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến và chỉ rõ bậc , hệ số cao nhất hệ số tự do của mỗi đa thức
b , Tìm M(x) = P(x) + Q(x) và N(x) = P(x) - Q(x)
c , tìm nghiệm của đa thúc M(x) , chứng tỏ nghiệm đó k phải là nghiệm của đa thức N ( x)
1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1%
1 năm sau tăng: 4000x2,1%= 82 người
Số dân sau 1 năm: 4000+82=4082 người
b/ Tương tự tỉ lệ tăng: 15:1000=1,5%
Số dân sau 1 năm: 4000x1,5%+4000=4060 người
P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8
Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5
ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm
Xét M(x)=0 suy ra...........
N(x)=5x+3
Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
Cho hai đa thức:
P(x)=\(2x^5+3x-x^2+3x^4-3x^3-2x\)
Q(x)=\(3x^3-9+3x^4+3x^2-2x^5-3x^3-2x\)
a)Thu gọn đa thuwscP(x) và Q(x), sau đó sắp xếp đa thức P(x) và Q(x) theo lũy thừa giảm của biến, rồi tìm bậc của chúng
b)Tính:P(x)+Q(x)
c)P(x)-Q(x)
Cho hai đa thức
M(x)= x^4+3x-1/9-x+3x^4+2x^2
N(x)==8x-2x^3+2/3+4x-4x^4-1/3
a, tính nghiệm của đa thức P(x)= M(x)=N(x)
b,thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến
a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)
\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)
giúp tuiiii
Cho đa thức f(x)=2x^3-x^5+3x^4+x^2-1/2x^3+3x^5-2x^2-x^4+1
a, Sắp xếp đa thức theo lũy thừa giảm dần của biến
b, Tìm bậc của đa thức
cTính f(1); f(-1)
a: F(x)=2x^3-1/2x^3-x^5+3x^5+3x^4-x^4+x^2-2x^2+1
=2x^5+2x^4+3/2x^3-x^2+1
b: bậc là 5
c: F(1)=2+2+3/2-1+1=4+3/2=11/2
F(-1)=-2+2-3/2-1+1=-3/2
Cho đa thức P = x^4 – 3 (x-1) + x^3 – 2x + x^2 – 1 – 2x^4
Q = -3x^2 + 2x (x+3) + 3x^4 – x(3x^2 +5 ) – 2
a) Thu gọn các đa thức trên rồi xác định hệ số cao nhất , hệ số tự do và tìm bậc của mỗi đa thức
Tìm đa thức M biết M = 3P +Q
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
Tìm nghiệm của đa thức g(x)=x^2-3x-4
Tìm nghiệm của đa thức h(x)=2x^3-x^2-2x+1
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)