chứng minh phương trình x4-x-30041975=0 có nhiều hơn 1 nghiệm
Chứng tỏ phương trình (x – 1)(x + 2)(3 – x) = 0 có nhiều hơn một nghiệm.
(x – 1)(x + 2)(3 – x) = 0
⇔ x – 1 = 0 hoặc x + 2 = 0 hoặc 3 – x = 0
⇔ x = 1 hoặc x = -2 hoặc x = 3.
có 3 giá trị x = 1, x = -2, x = 3 đều thỏa mãn phương trình.
Vậy phương trình trên có nhiều hơn 1 nghiệm.
chứng minh rằng phương trình m(x-1)3(x2-4)+x4-3=0 luôn có ít nhất 2 nghiệm phân biệt với mọi giá trị m
Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(1\right)=-2< 0\)
\(f\left(2\right)=13>0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (1;2)
\(f\left(-2\right)=13>0\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (-2;1)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm phân biệt
cho x1, x2 là 2 nghiệm dương của phương trình ax^2+bx+c=0
chứng minh phương trình cx^2+ax+b=0 cũng có 2 nghiệm dương x3,x4 và x1+x2+x3+x4>4 ?
Chứng tỏ phương trình x 2 – 1 = 0 có nhiều hơn một nghiệm
Ta có: x 2 – 1 = 0 ⇔ (x – 1)(x + 1) = 0 ⇔ x = 1 hoặc x = -1.
Có hai giá trị x = -1, x = 1 đều thỏa mãn phương trình.
Vậy phương trình có nhiều hơn 1 nghiệm.
cho phương trình (x+1)(x+2)(x+3)(x+4)=m
biết rằng phương trình đã cho có 4 nghiệm phân biệt x1,x2,x3,x4x1,x2,x3,x4
chứng minh x1.x2.x3.x4=24−m
Tìm m ∈ ℝ để phương trình 2 x 2 - x 4 = m có nhiều hơn 2 nghiệm
Cho hai phương trình: x2-5x+6=0 (1)
x+(x-2)(2x+1)=2 (2)
a) Chứng minh hai phương trình có nghiệm chung là x=2
b) Chứng minh: x=3 là nghiệm của (1) nhưng không là nghiệm của (2).
c) Hai phương trình đã cho có tương đương với nhau không, vì sao?
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
chứng minh phương trình sau vô nghiệm:
x4-2x3+10x+30=0
Giải:
Tập xác định của phương trình
x\(\varepsilon\) (\(\infty\);\(\infty\)
Chứng minh rằng phương trình: m x − 1 3 . ( x 2 − 4 ) + x 4 – 3 = 0 luôn có ít nhất hai nghiệm với mọi giá trị của tham số m
Xét hàm số f ( x ) = m x − 1 3 . ( x 2 − 4 ) + x 4 – 3 trên các đoạn [−2; 1], [1; 2]