Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 12 2019 lúc 7:52

ĐÁP ÁN D

Đường tròn (C) có  tâm I( -1; 3).

Do đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB nên    I M    ⊥ Δ ( quan hệ vuông góc đường kính và dây cung).

Đường thẳng ∆: đi qua  M(-2; 1) và nhận   M I → (    1   ;     2 )  làm VTPT nên có phương trình là :

1. (x + 2) +  2(y – 1) = 0 hay x+ 2y  = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 6 2019 lúc 4:29

Cách 1 : Xác định các hệ số a, b, c.

a) x2 + y2 – 2x – 2y – 2 = 0 có hệ số a = 1 ; b = 1 ; c = –2

⇒ tâm I (1; 1) và bán kính Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

b) 16x2 + 16y2 + 16x – 8y –11 = 0

Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

⇒ Đường tròn có tâm Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10 , bán kính Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

c) x2 + y2 - 4x + 6y - 3 = 0

⇔ x2 + y2 - 2.2x - 2.(-3).y - 3 = 0

có hệ số a = 2, b = -3,c = -3

⇒ Đường tròn có tâm I(2 ; –3), bán kính Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

Cách 2 : Đưa về phương trình chính tắc :

a) x2 + y2 - 2x - 2y - 2 = 0

⇔ (x2 - 2x + 1) + (y2 - 2y +1) = 4

⇔(x-1)2 + (y-1)2 = 4

Vậy đường tròn có tâm I(1 ; 1) và bán kính R = 2.

b) 16x2 + 16y2 + 16x - 8y - 11 = 0

Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

Vậy đường tròn có tâm Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10 và bán kính R = 1.

c) x2 + y2 - 4x + 6y -3 = 0

⇔ (x2 - 4x + 4) + (y2 + 6y + 9) = 4 + 9 + 3

⇔ (x - 2)2 + (y + 3)2 = 16

Vậy đường tròn có tâm I( 2 ; –3) và bán kính R = 4.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2019 lúc 12:49

Đáp án: A

Ta có:

(C): x 2  + y 2  + 2x + 2y - 2 = 0 ⇔ (x + 1 ) 2  + (y + 1 ) 2  = 4 ⇒ I(-1;-1)

Phương trình tiếp tuyến của đường tròn tại M là đường thẳng đi qua M và nhận vector IM = (0;2) làm vecto pháp tuyến: 0.(x + 1) + 2.(y - 1) = 0 ⇔ y - 1 = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2018 lúc 6:58

a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.

Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :

M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2   +   y 2   −   2 x   +   6 y   +   6   =   0 .

b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .

Vì I là trung điểm của MM' nên M′ = (4;1)

Vì d' song song với d nên d' có phương trình 3x – y + C = 0.

Lấy một điểm trên d, chẳng hạn N(0; 9).

Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).

Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.

Vậy phương trình của d' là 3x – y – 11 = 0.

Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),

bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).

Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x   −   3 2   +   y   −   1 2   =   4 .

Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2021 lúc 22:22

Đường tròn (C) tâm \(I\left(1;3\right)\) bán kính \(R=\sqrt{10}\)

Gọi 2 tiếp điểm là A và B \(\Rightarrow\) tứ giác IAMB là hình chữ nhật (có 3 góc vuông)

Mà \(IA=IB=R\Rightarrow IAMB\) là hình vuông (hcn có 2 cạnh kề bằng nhau)

\(\Rightarrow IM=IA\sqrt{2}=R\sqrt{2}=2\sqrt{5}\)

Gọi \(M\left(3;m\right)\Rightarrow\overrightarrow{IM}=\left(2;m-3\right)\)

\(\Rightarrow IM=\sqrt{4+\left(m-3\right)^2}=2\sqrt{5}\)

\(\Leftrightarrow\left(m-3\right)^2=16\Rightarrow\left[{}\begin{matrix}m=-1\\m=7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(3;-1\right)\\M\left(3;7\right)\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2018 lúc 14:29

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2019 lúc 9:33

Đáp án: B

(C): x 2  + y 2  - 2x + 6y + 8 = 0

⇔ (x - 1 ) 2  + (y + 3 ) 2  = 2 có I(1;-3), R = 2

Gọi d’ là tiếp tuyến của đường tròn (C) và song song với d

Vì d'//d ⇒ d': x + y + c = 0, (c ≠ 4)

d’ là tiếp tuyến của (C) nên d(I;d') = R

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2017 lúc 7:25

Trần Công Thanh Tài
Xem chi tiết
Minh Hồng
10 tháng 5 2022 lúc 10:51

a) Gọi đường tròn cần tìm là \(\left(C\right):x^2+y^2-2ax-2by+c=0\)

\(A\left(-1;1\right)\in\left(C\right)\Rightarrow1+1+2a-2b+c=0\Rightarrow2a-2b+c=-2\)

\(B\left(3;1\right)\in\left(C\right)\Rightarrow9+1-6a-2b+c=0\Rightarrow-6a-2b+c=-10\)

\(C\left(1;3\right)\in\left(C\right)\Rightarrow1+9-2a-6b+c=0\Rightarrow-2a-6b+c=-10\)

Giải hệ phương trình ta được: \(a=1;b=1;c=-2\)

Vậy đường tròn cần tìm là: \(x^2+y^2-2x-2y-2=0\)

Minh Hồng
10 tháng 5 2022 lúc 10:55

b) Ta có \(\left(C\right):x^2+y^2-4x+6y+3=0\)

\(\Rightarrow a=\dfrac{-4}{-2}=2;b=\dfrac{6}{-2}=-3;c=3\)

\(\Rightarrow I\left(2;-3\right)\) là tâm, bán kính \(R=\sqrt{2^2+\left(-3\right)^2-3}=\sqrt{10}\)

Để \(\left(\Delta\right)\) tiếp xúc đường tròn \(\Leftrightarrow d\left(I;\Delta\right)=R\)

\(\Leftrightarrow\dfrac{\left|9+m\right|}{\sqrt{10}}=\sqrt{10}\Leftrightarrow\left|9+m\right|=10\Leftrightarrow\left[{}\begin{matrix}9+m=10\\9+m=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-19\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 8 2019 lúc 12:35