Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Công Thanh Tài

a)Viết phương trình đường tròn đi qua 3 điểm A(-1;1);B(3;1);C(1;3)

b)Cho (C):x2+y2-4x+6y+3=0 và (Δ):3x-y+m=0.Tìm m để đường thẳng (Δ) tiếp xúc với đường tròn (C)

Minh Hồng
10 tháng 5 2022 lúc 10:51

a) Gọi đường tròn cần tìm là \(\left(C\right):x^2+y^2-2ax-2by+c=0\)

\(A\left(-1;1\right)\in\left(C\right)\Rightarrow1+1+2a-2b+c=0\Rightarrow2a-2b+c=-2\)

\(B\left(3;1\right)\in\left(C\right)\Rightarrow9+1-6a-2b+c=0\Rightarrow-6a-2b+c=-10\)

\(C\left(1;3\right)\in\left(C\right)\Rightarrow1+9-2a-6b+c=0\Rightarrow-2a-6b+c=-10\)

Giải hệ phương trình ta được: \(a=1;b=1;c=-2\)

Vậy đường tròn cần tìm là: \(x^2+y^2-2x-2y-2=0\)

Minh Hồng
10 tháng 5 2022 lúc 10:55

b) Ta có \(\left(C\right):x^2+y^2-4x+6y+3=0\)

\(\Rightarrow a=\dfrac{-4}{-2}=2;b=\dfrac{6}{-2}=-3;c=3\)

\(\Rightarrow I\left(2;-3\right)\) là tâm, bán kính \(R=\sqrt{2^2+\left(-3\right)^2-3}=\sqrt{10}\)

Để \(\left(\Delta\right)\) tiếp xúc đường tròn \(\Leftrightarrow d\left(I;\Delta\right)=R\)

\(\Leftrightarrow\dfrac{\left|9+m\right|}{\sqrt{10}}=\sqrt{10}\Leftrightarrow\left|9+m\right|=10\Leftrightarrow\left[{}\begin{matrix}9+m=10\\9+m=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-19\end{matrix}\right.\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Trần Minh Quân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hoàng Đức Anh
Xem chi tiết
Trần Công Thanh Tài
Xem chi tiết
Tuấn Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Duy Tân
Xem chi tiết