rút gọn biểu thức( 1-x^3 phần 1-x): 1 phần x^2
Cho biểu thức
A=(x phần x2-4 + 2 phần 2-x + 1 phần 2+x).x+2 phần 2
a) Tìm điều kiện của x để biểu thức A xác định
b) Rút gọn A
c) Tính giá trị của A khi x=-1
`A=(x/[x^2-4]+2/[2-x]+1/[2+x]).[x+2]/2`
`a)ĐK: x \ne +-2`
`b)` Với `x \ne +-2` có:
`A=[x-2(x+2)+x-2]/[(x-2)(x+2)].[x+2]/2`
`A=[x-2x-4+x-2]/[x-2]. 1/2`
`A=[-3]/[x-2]`
`c)x=-1` t/m đk `=>` Thay `x=-1` vào `A` có: `A=[-3]/[-1-2]=1`
cho biểu thức A= 1 phần 2 căn x - 2 - 1 phần 2 căn x +2 + căn x phần 1-x với x lớn hơn hoặc = 0; x khác 1
a/ rút gọn A
b/tính giá trị của A với x= 4 phần 9
c/ tính giá trị của x để giá trị tuyệt đối của A= 1 phần 3
a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:
Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))
Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)
b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5
Vậy, khi x = 4/9, giá trị của A là 6/5.
c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3
Vì A là một số âm, ta có: -√x/(x - 1) = -1/3
Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0
Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2
Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.
Bài 3. Rút gọn biểu thức: a)x+3+√x² - 6x +9 (x ≤3) b)√x² + 4x +4-√√x² (-2≤x≤0) C)√x²-2x+1 phần x-1 -(x>1) d) x-2/+ √x²-4x+4 x-2 (x1. F,2(a−1) –5a Với a0
a: A=x+3+|x-3|
=x+3+3-x(x<=3)
=6
b:\(B=\sqrt{x^2+4x+4}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
=x+2-x=2
c: \(C=\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
\(=\dfrac{\left|x-1\right|}{x-1}=\dfrac{x-1}{x-1}=1\)
cho biểu thức B = ( căn x - 2 phần x-1 - căn x + 2 phần x+2 căn x +1) . (1-x)2 phần 2
a/ tìm điều kiện xác đinh và rút gọn B
b/ chứng tỏ rằng nếu 0<x<1 thì B>0
c/tính giá trị lớn nhất của B
\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)
a) ĐK: \(x\ne1,x\ge0\)
\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)
\(B=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(B=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(B=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(B=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2}{2}\)
\(B=-\sqrt{x}\left(\sqrt{x}-1\right)\)
Cho biểu thức P=(2x-1 phần x+3-x phần 3-x-3-10x phần x^2-9):x+2 phần x-3 a)Rút gọn P và tìm đkxd của P b)tính giá trị của P khi x^2-7x+12=0 c)tính giá trị nguyên của x để P có giá trị nguyên
\(a,P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\left(x\ne\pm3;x\ne-2\right)\\ P=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\\ P=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}=\dfrac{3x}{x-3}\\ b,x^2-7x+12=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow x=4\left(x\ne3\right)\\ \Leftrightarrow A=\dfrac{3\cdot4}{4-3}=12\\ c,P=\dfrac{3\left(x-3\right)+9}{x-3}=3+\dfrac{9}{x-3}\in Z\\ \Leftrightarrow x-3\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;4;6;12\right\}\)
BT
Cho biểu thức : P =(1 phần x-1-x phần 1-3x^3 nhân x^2+x+1 phần x+1):(2x+1 phần x^2 +1)
a) điều kiện xác định P
b) Rút gọn biểu thức P
Phần tự luận
Nội dung câu hỏi 1
Cho biểu thức:
P = x + 1 x + 2 + 3 x + 2 x - 4
Q = x - 5 x + 6 x + 2 x với x > 0, x khác 4
a) Rút gọn biểu thức P
Phần II:Tự luận (7đ)
Câu Phần II:Tự luận (7đ)
Câu 1: a) Tính:
b) Cho biểu thức:
*) Tìm điều kiện xác định và rút gọn biểu thức A.
*) Tìm các giá trị của x để biểu thức A có giá trị âm.
Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1 (d1)
y = (3 – m)x – 2 với m ≠ 3 (d2)
a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt
b/ Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ khi m = 0.
c/ Gọi I là giao điểm của hai đồ thị nói trên. Tìm tọa độ của điểm I (bằng phép toán).
d/ Tính góc hợp bởi đường thẳng (d2) với trục Ox khi m = 0.
Câu 3:Từ điểm M ở ngoài (O; R) vẽ hai tiếp tuyến MA, MB với (O) (A, B là 2
tiếp điểm), vẽ dây AC// OM.
a) Chứng minh OM AB tại H và suy ra OH.OM = R2.
b) MC cắt (O) tại E. Chứng minh 3 điểm B, O, C thẳng hàng và MH.MO = ME.MC.
c) Vẽ AK BC tại K, gọi N là giao điểm của MC và AK. Chứng minh NA = NK
1: a) Tính:
b) Cho biểu thức:
*) Tìm điều kiện xác định và rút gọn biểu thức A.
*) Tìm các giá trị của x để biểu thức A có giá trị âm.
Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1 (d1)
y = (3 – m)x – 2 với m ≠ 3 (d2)
a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt
b/ Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ khi m = 0.
c/ Gọi I là giao điểm của hai đồ thị nói trên. Tìm tọa độ của điểm I (bằng phép toán).
d/ Tính góc hợp bởi đường thẳng (d2) với trục Ox khi m = 0.
Câu 3:Từ điểm M ở ngoài (O; R) vẽ hai tiếp tuyến MA, MB với (O) (A, B là 2
tiếp điểm), vẽ dây AC// OM.
a) Chứng minh OM AB tại H và suy ra OH.OM = R2.
b) MC cắt (O) tại E. Chứng minh 3 điểm B, O, C thẳng hàng và MH.MO = ME.MC.
c) Vẽ AKBC tại K, gọi N là giao điểm của MC và AK. Chứng minh NA = NK
mọi người giúp mik với
Câu 2:
a: Để (d1) cắt (d2) thì \(m-1\ne3-m\)
=>\(2m\ne4\)
=>\(m\ne2\)
b: Thay m=0 vào (d1), ta được:
\(y=\left(0-1\right)x+2=-x+2\)
Thay m=0 vào (d2), ta được:
\(y=\left(3-0\right)x-2=3x-2\)
Vẽ đồ thị:
c: Phương trình hoành độ giao điểm là:
3x-2=-x+2
=>3x+x=2+2
=>4x=4
=>x=1
Thay x=1 vào y=3x-2, ta được:
y=3*1-2=3-2=1
d:
Khi m=0 thì (d2): y=3x-2
Gọi \(\alpha\) là góc tạo bởi (d2): y=3x-2 với trục Ox
y=3x-2 nên a=3
\(tan\alpha=a=3\)
=>\(\alpha\simeq72^0\)
Câu 3:
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
b: Ta có: AC//OM
OM\(\perp\)AB
Do đó: AB\(\perp\)AC
=>ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
mà ΔABC nội tiếp (O)
nên O là trung điểm của BC
=>B,O,C thẳng hàng
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)CM tại E
Xét ΔMBC vuông tại B có BE là đường cao
nên \(ME\cdot MC=MB^2\)(3)
Xét ΔMBO vuông tại B có BH là đường cao
nên \(MH\cdot MO=MB^2\left(4\right)\)
Từ (3) và (4) suy ra \(ME\cdot MC=MH\cdot MO\)