GPT: \(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\)
\(\text{GPT: }\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}=\sqrt{3}-x^2\)
ĐKXĐ : -1 <= x <= 3
XH : \(\left(-x^2+4x+12\right)-\left(x^2+2x+3\right)=2x+9>0\)
=> VT > 0
VÌ -1 <=x <=3 => VT = \(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}.\sqrt{3-x}\)
Áp dụng BĐT \(\left(ab-cd\right)^2\le\left(a^2-c^2\right)\left(b^2-d^2\right)\) ta có :
\(VT^2=\left(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}\sqrt{3-x}\right)^2\ge\left(x+2-x-1\right)\left(6-x-3+x\right)=1.3=3\)
=> VT \(\ge\sqrt{3}\) dấu bằng xảy ra khi \(\left(x+2\right)\left(6-x\right)=\left(x+1\right)\left(3-x\right)\) <=> x = 0
VP = \(\sqrt{3}-x^2\le\sqrt{3}\)
Dấu bằng xảy ra khi x = 0
Để VT bằng VP => x = 0
gpt :A= \(2x^2-5x-1=\sqrt{x+2}+\sqrt{4-x}\)
B= \(\sqrt{x^2-2x+5}+2\sqrt{4x+5}=x^3-2x^2+5x+4\)
GPT: \(\frac{x^2-2x+14}{\sqrt{\left(7-2x\right)\left(2x+3\right)}}+\frac{12+2x-x^2}{\sqrt{4x^2-8x+29}}=20\)
Gpt:
\(\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}=\sqrt{3}-x^2\)\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\frac{1}{x^2}\right)\)\(\sqrt{-x^2+3x+4}+\sqrt{-y^2+2y+2}=\sqrt{-x^2+5x+14}\)\(\sqrt{x^2+8}-\sqrt{x^2+3}=\frac{1}{2}\left(3x-1\right)\)Bài quá dễ tự làm đi
k mình mình giải cho
Bạn nói dễ mà bạn không chịu làm thì bạn nói làm gì ???
GPT:\(\sqrt{1-x}+\sqrt{4+x}=3...\)
\(x^2+4x+5=2\sqrt{2x+3}\)
câu 1 GPT
a,\(\sqrt{9-12x+4x^2}=4\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}=1\)
a) \(\sqrt{9-12x+4x^2}=4\Leftrightarrow\sqrt{\left(2x\right)^2-2.2x.3+9}=4\Leftrightarrow\sqrt{\left(2x-3\right)^2}=4\left(1\right)\)Nếu \(x< \dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow3-2x=4\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)(nhận)
Nếu \(x\ge\dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow2x-3=4\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\)(nhận)
Vậy S=\(\left\{\dfrac{-1}{2};\dfrac{7}{2}\right\}\)
b) \(\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}=1\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+1\right)^2}=1\left(1\right)\)Nếu x<-1
\(\left(1\right)\Leftrightarrow1-x+\left[-\left(x+1\right)\right]=1\Leftrightarrow1-x+\left(-x-1\right)=1\Leftrightarrow1-x-x-1=1\Leftrightarrow-2x=1\Leftrightarrow x=\dfrac{-1}{2}\)(loại)
Nếu -1≤x<1
\(\left(1\right)\Leftrightarrow1-x+x+1=1\Leftrightarrow2=1\)(loại)
Nếu x≥1
\(\left(1\right)\Leftrightarrow x-1+x+1=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)(loại)
Vậy S=∅
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
gpt
\(4\sqrt{x+4}+\sqrt{16-3x}=x^2+4x+12\)
Gpt :
1) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
2) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+s}+\sqrt{x+1}=16\)
3)\(\sqrt{4x+20}+\sqrt{x+5}-\frac{1}{3}\sqrt{9x+45}=4\)
4) \(\frac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)