Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn
Xem chi tiết
nho quả
Xem chi tiết
Ngân Vũ Thị
19 tháng 7 2019 lúc 12:20

undefinedundefinedundefined

Nguyễn Thành Trương
19 tháng 7 2019 lúc 14:08

\(1)\left( {4 + \sqrt {15} } \right)\left( {\sqrt {10} - \sqrt 6 } \right)\left( {\sqrt {4 - \sqrt {15} } } \right)\\ = \left( {4\sqrt {10} - 4\sqrt 6 + \sqrt {150} - \sqrt {90} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {4\sqrt {10} - 4\sqrt 6 + 5\sqrt 6 - 3\sqrt {10} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {\sqrt {10} + \sqrt 6 } \right)\sqrt {4 - \sqrt {15} } \\ = \sqrt {10\left( {4 - \sqrt {15} } \right)} + \sqrt {6\left( {4 - \sqrt {15} } \right)} \\ = \sqrt {40 - 10\sqrt {15} } + \sqrt {24 - 6\sqrt {15} } \\ = \sqrt {{{\left( {5 - \sqrt {15} } \right)}^2}} + \sqrt {{{\left( {3 - \sqrt {15} } \right)}^2}} \\ = 5 - \sqrt {15} + \sqrt {15} - 3 = 2\)

2) Áp dụng bất đẳng thức AM - GM ta có

\(\dfrac{{{x^2}}}{{y + z}} + \dfrac{{y + z}}{4} \ge 2\sqrt {\dfrac{{{x^2}}}{{y + z}}.\dfrac{{y + z}}{4}} = x(1)\)

Hoàn toàn tương tự:

\(\dfrac{{{y^2}}}{{z + x}} + \dfrac{{z + x}}{4} \ge y\left( 2 \right)\\ \dfrac{{{z^2}}}{{x + y}} + \dfrac{{x + y}}{4} \ge z\left( 3 \right) \)

Từ (1), (2), (3) ta có ngay:\(\left(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\right)+ \left(\dfrac{y^2}{z+x}+\dfrac{z+x}{4}\right)+\left( \dfrac{z^2}{x+y} +\dfrac{x+y}{4}\right)\geqslant x+y+z\\ \iff\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant \dfrac{x+y+z}{2} \)

Chú ý rằng \(x+y+z=2\), ta có ngay\(\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant 1\)

Vậy giá trị nhỏ nhất của $P$ là $1$, đạt được khi $x=y=z=\dfrac{2}{3}$.

Haizzz bị lỗi công thức suốt :((

Nguyễn Thành Trương
19 tháng 7 2019 lúc 13:57

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGceaqabeaacaaIXa % GaaiykamaabmaabaGaaGinaiabgUcaRmaakaaabaGaaGymaiaaiwda % aSqabaaakiaawIcacaGLPaaadaqadaqaamaakaaabaGaaGymaiaaic % daaSqabaGccqGHsisldaGcaaqaaiaaiAdaaSqabaaakiaawIcacaGL % PaaadaqadaqaamaakaaabaGaaGinaiabgkHiTmaakaaabaGaaGymai % aaiwdaaSqabaaabeaaaOGaayjkaiaawMcaaaqaaiabg2da9maabmaa % baGaaGinamaakaaabaGaaGymaiaaicdaaSqabaGccqGHsislcaaI0a % WaaOaaaeaacaaI2aaaleqaaOGaey4kaSYaaOaaaeaacaaIXaGaaGyn % aiaaicdaaSqabaGccqGHsisldaGcaaqaaiaaiMdacaaIWaaaleqaaa % GccaGLOaGaayzkaaWaaOaaaeaacaaI0aGaeyOeI0YaaOaaaeaacaaI % XaGaaGynaaWcbeaaaeqaaaGcbaGaeyypa0ZaaeWaaeaacaaI0aWaaO % aaaeaacaaIXaGaaGimaaWcbeaakiabgkHiTiaaisdadaGcaaqaaiaa % iAdaaSqabaGccqGHRaWkcaaI1aWaaOaaaeaacaaI2aaaleqaaOGaey % OeI0IaaG4mamaakaaabaGaaGymaiaaicdaaSqabaaakiaawIcacaGL % PaaadaGcaaqaaiaaisdacqGHsisldaGcaaqaaiaaigdacaaI1aaale % qaaaqabaaakeaacqGH9aqpdaqadaqaamaakaaabaGaaGymaiaaicda % aSqabaGccqGHRaWkdaGcaaqaaiaaiAdaaSqabaaakiaawIcacaGLPa % aadaGcaaqaaiaaisdacqGHsisldaGcaaqaaiaaigdacaaI1aaaleqa % aaqabaaakeaacqGH9aqpdaGcaaqaaiaaigdacaaIWaWaaeWaaeaaca % aI0aGaeyOeI0YaaOaaaeaacaaIXaGaaGynaaWcbeaaaOGaayjkaiaa % wMcaaaWcbeaakiabgUcaRmaakaaabaGaaGOnamaabmaabaGaaGinai % abgkHiTmaakaaabaGaaGymaiaaiwdaaSqabaaakiaawIcacaGLPaaa 1)\left( {4 + \sqrt {15} } \right)\left( {\sqrt {10} - \sqrt 6 } \right)\left( {\sqrt {4 - \sqrt {15} } } \right)\\ = \left( {4\sqrt {10} - 4\sqrt 6 + \sqrt {150} - \sqrt {90} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {4\sqrt {10} - 4\sqrt 6 + 5\sqrt 6 - 3\sqrt {10} } \right)\sqrt {4 - \sqrt {15} } \\ = \left( {\sqrt {10} + \sqrt 6 } \right)\sqrt {4 - \sqrt {15} } \\ = \sqrt {10\left( {4 - \sqrt {15} } \right)} + \sqrt {6\left( {4 - \sqrt {15} } \right)} \\ = \sqrt {40 - 10\sqrt {15} } + \sqrt {24 - 6\sqrt {15} } \\ = \sqrt {{{\left( {5 - \sqrt {15} } \right)}^2}} + \sqrt {{{\left( {3 - \sqrt {15} } \right)}^2}} \\ = 5 - \sqrt {15} + \sqrt {15} - 3 = 2 \)

2) Áp dụng bất đẳng thức AM - GM ta có

\begin{equation} \label{eq:1} \dfrac{x^2}{y+z}+\dfrac{y+z}{4}\geqslant 2\sqrt{\dfrac{x^2}{y+z}\cdot \dfrac{y+z}{4}}=x \end{equation}

Hoàn toàn tương tự:

\begin{align} \label{eq:2} \dfrac{y^2}{z+x}+\dfrac{z+x}{4}\geqslant y \\ \label{eq:3} \dfrac{z^2}{x+y}+\dfrac{x+y}{4}\geqslant z \end{align}

Từ \eqref{eq:1}, \eqref{eq:2}, \eqref{eq:3} ta có ngay

\[\left(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\right)+ \left(\dfrac{y^2}{z+x}+\dfrac{z+x}{4}\right)+\left( \dfrac{z^2}{x+y} +\dfrac{x+y}{4}\right)\geqslant x+y+z\]

\[\iff\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant \dfrac{x+y+z}{2}\]

Chú ý rằng $x+y+z=2$, ta có ngay

\[\dfrac{x^2}{y+z}+ \dfrac{y^2}{z+x}+ \dfrac{z^2}{x+y}\geqslant 1\]

Vậy giá trị nhỏ nhất của $P$ là $1$, đạt được khi $x=y=z=\dfrac{2}{3}$.

Lê Thụy Sĩ
Xem chi tiết
cao van duc
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

HUYNHTRONGTU
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Khách vãng lai đã xóa
Lê Thụy Sĩ
Xem chi tiết
Lê Thụy Sĩ
Xem chi tiết
TFBoys
Xem chi tiết
roronoa zoro
Xem chi tiết
Vũ Thu Thảo
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2020 lúc 17:51

\(M=\frac{-4\left(x-8\sqrt{x}+16\right)+4x-28\sqrt{x}+49}{\left(\sqrt{x}-4\right)^2}=-4+\frac{\left(2\sqrt{x}-7\right)^2}{\left(\sqrt{x}-4\right)^2}\ge-4\)

Dấu "=" xảy ra khi \(2\sqrt{x}=7\Rightarrow x=\frac{49}{4}\)

Khách vãng lai đã xóa
Quyết Tâm Chiến Thắng
Xem chi tiết
Nyatmax
10 tháng 10 2019 lúc 20:03

Ta co:

\(M=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{x+\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-2}=\frac{x}{\sqrt{x}-2}=8+\frac{\left(\sqrt{x}-4\right)^2}{\sqrt{x}-2}\ge8\)

Dau '=' xay ra khi \(x=16\)

Vay \(M_{min}=8\)khi \(x=16\)