A=(1-1/2).(1-1/3). ... .(1-1/2011)
B=3/2.4/3.5/4.6/5. ... .1000/999
Thực hiện tính :
a) A = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+..+2013)
b) B = 1-3/7.3+2-4/2.4+3-5/3.5+4-6/4.6+....+2011-2013/2011.2013+2012-2014/2012.2014-2013+2014/2013.2014
tính
A=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+4+...+2013)
B=(1-3)/(1.3)+(2-4)/(2.4)+(3-5)/(3.5)+(4-6)/(4.6)+...+(2011-2013)/(2011.2013)+(2012-2014)/(2012.2014)-(2013+2014)/(2013.2014)
thứ 7 mình nộp ai làm nhanh mình tích cho
nhớ giải chi tiết
a)P=(1-1/2).(1-1/3).(1-1/4).....(1-1/999).(1-1/1000)
b)A=3/4. 8/9.15/16.....2499/2500
c)B=(22/1.3) . (32/2.4) . (42/3.5)...(502/49.51)
Tính
A=13/21.2/11+13/21.9/11+8/21.
B=(1-1/5).(1-2/5).(1-3/5)...(1-9/5)
C= (1-1/2).(1-1/3).(1-1/4)...(1-1/50)
D= 2²/1.3 . 3²/2.4 . 4²/3.5 . 5²/4.6 . 6²/5.7
A = 13/21.2/11 + 13/21.9/11 + 8/21
= (13/21) + (13/21) + (8/21)
= (13 + 13 + 8)/21
= 34/21
B = (1 - 1/5)(1 - 2/5)(1 - 3/5)...(1 - 9/5)
= (4/5)(3/5)(2/5)(1/5)(0/5)(-1/5)(-2/5)(-3/5)(-4/5)
= 0
C = (1 - 1/2)(1 - 1/3)(1 - 1/4)...(1 - 1/50)
= (1/2)(2/3)(3/4)(4/5)...(49/50)
= 1/50
D = (2^2/1.3) * (3^2/2.4) * (4^2/3.5) * (5^2/4.6) * (6^2/5.7)
= (4/3) * (9/8) * (16/15) * (25/23) * (36/35)
= 0.979
Cho A = 1/1.3 + 1/2.4 + 1/3.5 + 1/3.5 + 1/4.6 + ... + 1/98.100 .Chứng tỏ A < 3/4
Thực hiện phép tính
a) A= \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)\)\(+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)
b) B=\(\dfrac{1-3}{1.3}+\dfrac{2-4}{2.4}+\dfrac{3-5}{3.5}+\dfrac{4-6}{4.6}+...+\dfrac{2011-2013}{2011.2013}+\dfrac{2012-2014}{2012.2014}-\dfrac{2013+2014}{2013.2014}\)
Chứng tỏ :
a, A = \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2022.2024}\) < \(\dfrac{1}{4}\)
b, B =\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}< \dfrac{1}{2}\)
c, C =\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{4}\)
d, D =\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2014^2}< \dfrac{1}{2}\)
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)
Tính các tổng sau:
1.100+2.99+3.98+...+98.3+99.2+100.19+99+999+....+999...9991.2+2.3+3.4+...+n(n+1)2.4+4.6+6.8+....+2n(2n+2)1.3+2.4+3.5+...+n(n+2)1.2.3+2.3.4+3.4.5+....+n(n+1).(n+2)12+22+32+...+n2D=\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)
E=\(\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}....\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}\)
Ta có: D\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2004}{2005}=\dfrac{1.2.3...2004}{2.3.4...2005}=\dfrac{1}{2005}\)
Ta có: \(E=\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}...\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}=\dfrac{\left(1.2.3.4...1000\right)\left(1.2.3.4...1000\right)}{\left(1.2.3....1000\right)\left(3.4.5....1001\right)}=\dfrac{2}{1001}\)