trong mp tọa độ Oxy, cho đg thg d: \(2x-y-2=0\) và điểm I(1;1). lập pt đi qua I và tạo với d một góc bằng \(45^o\)
trong mp tọa độ Oxy, cho đg thg d: 2x-y+3=0 và 2 điểm A(1;0); B(2;1). tìm điểm M trên d sao cho MA+MB nhỏ nhất
Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d
Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)
\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d
Phương trình d' qua A và vuông góc d có dạng:
\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)
D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)
C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)
\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:
\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)
M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)
Trong hệ mặt phẳng tọa độ Oxy, viết pt đg thg d biết d vuông góc với ∆: 2x-y+1=0 và cắt đg tròn (C): \(x^2+y^2+2x-4y-4=0\) theo một dây cung có độ dài bằng 6
Đường tròn (C) tâm \(I\left(-1;2\right)\) bán kính \(R=\sqrt{\left(-1\right)^2+2^2+4}=3\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{R^2-\left(\frac{6}{2}\right)^2}=0\)
\(\Rightarrow d\) đi qua I
d vuông góc \(\Delta\) nên d nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)
Cho các hàm số y=-2x và y=x
a)vẽ trên cùng một hệ trục tọa độ Oxy hai hàm số trên
b) Qua điểm (0;4) vẽ đg thg d song song với trụ Ox và cắt các đg thg y=-2x và y=x lần lượt ở A và B. Tìm tọa độ các điểm A và B
c Tính chi vi tam giác AOB
Cho các hàm số y=-2x và y=x
a)vẽ trên cùng một hệ trục tọa độ Oxy hai hàm số trên
b) Qua điểm (0;4) vẽ đg thg d song song với trụ Ox và cắt các đg thg y=-2x và y=x lần lượt ở A và B. Tìm tọa độ các điểm A và B
c Tính chi vi tam giác AOB
Trong mp Oxy, cho 2 đg thg
\(d1:x+y-1=0\)
d2: \(2x-y-1=0\)
lập pt đg thg d đi qua M(1;-1) cắt d1, d2 tương ứng tại A, B sao cho \(2\overrightarrow{MA}+\overrightarrow{MB}=0\)
Gọi \(A\left(a;1-a\right)\) ; \(B\left(b;2b-1\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-1;2-a\right)\\\overrightarrow{MB}=\left(b-1;2b\right)\end{matrix}\right.\)
\(2\overrightarrow{MA}+\overrightarrow{MB}=0\Leftrightarrow\left(2a-2;4-2a\right)+\left(b-1;2b\right)=\left(0;0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2+b-1=0\\4-2a+2b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\-2a+2b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{5}{3}\\b=-\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow A\left(\frac{5}{3};-\frac{2}{3}\right);B\left(-\frac{1}{3};-\frac{5}{3}\right)\) \(\Rightarrow\overrightarrow{AB}=\left(2;1\right)\)
Phương trình AB:
\(1\left(x-\frac{5}{3}\right)-2\left(y+\frac{2}{3}\right)=0\Leftrightarrow x-2y-3=0\)
(3)
a) gpt: \(\sqrt{2x-3}-x+3=0\)
b) tìm các giá trị của tham số m để pt \(\sqrt{2x^2+mx-3}=x+1\) có 2 nghiệm phân biệt.
(4) trong mặt phẳng tọa độ Oxy, cho điểm I (1; -2) và 2 đg thẳng d1: 3x+y+5=0, d2: 3x+y+1=0.
a) viết phương trình đg thẳng d vuông góc với đg thẳng d1 và đi qua gốc tọa độ
b) viết pt đg thẳng đi qua 1 và cắt d1, d2 lần lượt tại A và B sao cho AB= \(2\sqrt{2}\)
giúp mk vs ạ mk cần gấp
(3):
a: =>căn 2x-3=x-3
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x=6
b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1
=>x>=-1 và x^2+(m-2)x-4=0
=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0
------
Trong mp tọa độ Oxy, cho \(d1:2x-my+3=0\) và \(d2:\left\{{}\begin{matrix}x=1-t\\y=3+3t\end{matrix}\right.\). Tìm giá trị tham số m để đg thg d1 vuông góc d2
\(d_1\) nhận \(\left(2;-m\right)\) là 1 vtpt
\(d_2\) nhận \(\left(-1;3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt
Để 2 đường thẳng vuông góc
\(\Leftrightarrow2.\left(-1\right)+\left(-m\right).3=0\Rightarrow m=-\frac{2}{3}\)
Trong mp Oxy, cho A(-1;2), B(-3;2) và đg thg d:2x-y+3=0. Tìm C thuộc d sao cho tam giác ABC cân tại C
Do C thuộc d nên tọa độ C có dạng \(C\left(c;2c+3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+1;2c+1\right)\\\overrightarrow{BC}=\left(c+3;2c+1\right)\end{matrix}\right.\)
\(AC=BC\Leftrightarrow\left(c+1\right)^2+\left(2c+1\right)^2=\left(c+3\right)^2+\left(2c+1\right)^2\)
\(\Leftrightarrow2c+1=6c+9\Rightarrow c=-2\)
\(\Rightarrow C\left(-2;-1\right)\)
trong mp Oxy, cho 2 đg thg d: \(x+3y+8=0\), d': \(3x-4y+10=0\) và điểm A(-2;1). Viết pt đg tròn có tâm thuộc đg thg d, đi qua điểm A và tiếp xúc d'
Gọi tâm \(I\left(-3a-8;a\right)\Rightarrow\overrightarrow{IA}=\left(3a+6;1-a\right)\)
\(d\left(I;d'\right)=\frac{\left|3\left(-3a-8\right)-4a+10\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{\left|13a+14\right|}{5}\)
(C) qua A và tiếp xúc d' \(\Leftrightarrow IA=d\left(I;d'\right)\)
\(\Leftrightarrow\left(3a+6\right)^2+\left(1-a\right)^2=\frac{\left(13a+14\right)^2}{25}\)
\(\Leftrightarrow a^2+6a+9=0\Rightarrow a=-3\)
\(\Rightarrow I\left(1;-3\right)\Rightarrow R=IA=5\)
Pt đường tròn: \(\left(x-1\right)^2+\left(y+3\right)^2=25\)