Chương III: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

trong mp tọa độ Oxy, cho đg thg d: 2x-y+3=0 và 2 điểm A(1;0); B(2;1). tìm điểm M trên d sao cho MA+MB nhỏ nhất

Nguyễn Việt Lâm
8 tháng 6 2020 lúc 16:15

Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d

Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)

\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d

Phương trình d' qua A và vuông góc d có dạng:

\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)

D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)

C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)

\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:

\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)

M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Hải An
Xem chi tiết
Đậu Hũ Kho
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Seijuro Akashi
Xem chi tiết
Đậu Hũ Kho
Xem chi tiết