Tìm số nguyên tố p sao cho 2p - 1 ; p mũ 3 + 2 là các số nguyên tố
Tìm các số nguyên tố p sao cho 2p-1 và 2p+1 cũng là số nguyên tố
vs p=2 bn tu xet nha. vs p=3k+1 thi bn cx tu xet .vs p=3k+2 thi bn cx tu xet vs p=3k ma p la snt nen p=3 khi do bn tu thay vao
bẠN tự xét p có dạng 3k,3k+1,3k+2 nha
thì sẽ được p có dạng 3k thì 2p-1 và 2p+1 là snt
mà p là snt =>p=3
tìm số nguyên tố p sao cho 2p+1 và 2p+5 là 2 số nguyên tố ?
Bài làm :
Xét 3 trường hợp :
Trường hợp 1: p= 3⇒2.p+ 1= 7
2.p+ 5= 11 ( thỏa mãn)
Trường hợp 2 : p= 3.k+ 1⇒ 2.p+ 1= 2. ( 3.k+ 1) + 1= 6.k+ 2+ 1= 6.k+ 3= 3. (2.k+ 1) chia hết cho 3 và lớn hơn 3 nên là hợp số
⇒ Loại
Trường hợp 3 : p= 3.k+ 2⇒ 2.p+ 5= 6.k+ 4+ 5= 6.k+ 9= 3. (2.k+ 3) chia hết cho 3 và lớn hơn 3 nên là hợp số
⇒ Loại
Vậy p= 3
Tìm số nguyên tố p sao cho 2p-1, 4p-1 cũng là số nguyên tố
Do 2p - 1 lẻ và 4p - 1 lẻ nên p chẵn
Vậy p = 2
Dùng phương pháp đánh giá em nhá.
Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)
p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)
Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)
p = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)
p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)
Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)
Từ những phân tích trên ta có p = 2; 3
Kết luận: p \(\in\) {2; 3}
Tìm số nguyên tố p sao cho 2p+1, 4p+1 cùng là số nguyên tố
Dùng phương pháp đánh giá em nhá.
+ Nếu p = 2 ta có: 2p + 1 = 5 (thỏa mãn); 4p + 1 = 9 (loại)
+ Nếu p = 3 ta có: 2p + 1 = 7 (thỏa mãn); 4p + 1 = 13 (thỏa mãn)
+ Nếu p > 3 mà p là số nguyên tố nên p có dạng:
p = 3k + 1; p = 3k + 2 (k \(\in\)N*)
Với p = 3k + 1 ⇒ 2p + 1 = 2.(3k+1) + 1 = 6k+3 ⋮ 3 (loại)
Với p = 3k + 2 ⇒ 4p + 1 = 4.(3k + 2) + 1 = 12k + 9 ⋮ 3(loại)
Từ những phân tích trên ta có: p = 3
Kết luận với p = 3 thì p; 2p + 1; 4p + 1 đồng thời là số nguyên tố.
Gọi d là ƯCLN(2p + 1; 4p + 1)
⇒ 2p + 1 ⋮ d và 4p + 1 ⋮ d
⇒ 2 x (2p + 1) ⋮ d và 4p + 1 ⋮ d
⇒ 4p + 2 ⋮ d và 4p + 1 ⋮ d
⇒ (4p + 2) - (4p + 1) ⋮ d
⇒ 4p + 2 - 4p - 1 ⋮ d
⇒ 2 - 1 ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 2p + 1 và 4p + 1 là 2 số nguyên tố cùng nhau
Cùng là số nguyên tố nó khác với nguyên tố cùng nhau bạn ơi.
Xét \(p=2\). Khi đó \(4.2+1=9\) không là SNT.
Xét \(p=3\). Khi đó \(2.3+1=7\) và \(4.3+1=13\) là các SNT.
Xét \(p>3\). Khi đó \(p=3k+1\) hoặc \(p=3k+2\).
Nếu \(p=3k+1\) thì \(2p+1=2\left(3k+1\right)+1=6k+3⋮3\) nên \(2p+1\) không phải là SNT.
Nếu \(p=3k+2\) thì \(4p+1=4\left(3k+2\right)+1=12k+9⋮3\) nên \(4p+1\) không phải là SNT.
Vậy nếu p là SNT lớn hơn 3 thì 1 trong 2 số \(2p+1,4p+1\) không là SNT. Do đó SNT p duy nhất thỏa mãn đề bài là \(p=3\)
tìm số nguyên tố p sao cho: 2p+1, 4p+1 cũng là số nguyên tố
Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.
Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.
Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)
Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.
Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.
Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.
tìm số nguyên tố p sao cho 2p+1 và 4p+1 cũng là số nguyên tố
Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$
$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.
Vậy $p=3$ là đáp án duy nhất.
Tìm số nguyên tố P sao cho các số sau cũng là số nguyên tố
a) 2p-1 và 4p-1
b) 2p+1 và 4p+1
b,
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
tìm số nguyên tố p sao cho 2p+1 và p+10 đều là số nguyên tố?
TH1: p=2
=>2*2+1=5 và 2+10=12(loại)
TH2: p=3
=>p+10=13; 2*3+1=7
=>Nhận
TH3: p=3k+1
=>2p+1=6k+2+1=6k+3(loại)
TH4: p=3k+2
=>p+10=3k+12(loại)
=>P=3
tìm số nguyên tố p sao cho 2p-1 và 2p+1 cũng là số nguyên tố
(cần gấp trong hôm nay nhé)
Tìm số nguyên tố p sao cho 2p+1 và 5p+2 cùng là số nguyên tố
2p + 1, 5p + 2 cùng là các số nguyên tố
Chỉ có một số đáp ứng là số 3 vì:
2x3+1=7
5x3+2=17
Mà 7 và 17 là số nguyên tố nên p=3