Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hiền
Xem chi tiết
trịnh việt nguyên
Xem chi tiết
Cẩm Nhung Nguyễn Ngọc
Xem chi tiết
Kiều Vũ Linh
5 tháng 5 2023 lúc 9:28

Em xem lại chỗ câu b) các số liệu nhé

Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 21:33

a: Xet ΔABD vuông tại A và ΔBDC vuông tại B có

góc ABD=góc BDC

=>ΔABD đồng dạng với ΔBDC

 

phạm thuỳ linh
Xem chi tiết
Tâm Mỹ
Xem chi tiết
phung thi thuy tien
Xem chi tiết
Trần Thị Minh Ngọc
Xem chi tiết
Trần Tuấn Hoàng
30 tháng 1 2022 lúc 21:35

a.- Xét △KDC có:

DC//BF (ABCD là hình bình hành).

=>\(\dfrac{CK}{KF}=\dfrac{DK}{BK}\) (định lí Ta-let). (1)

- Xét △KDM có:

MD//BD (ABCD là hình bình hành).

=>\(\dfrac{DK}{BK}=\dfrac{MK}{CK}\) (định lí Ta-let). (2)

- Từ (1) và (2) suy ra:

\(\dfrac{CK}{KF}=\dfrac{KM}{CK}\). Vậy \(CK^2=KM.KF\)

b. - Xét △KDC có:

DC//BF (ABCD là hình bình hành).

=> \(\dfrac{DK}{BK}=\dfrac{CK}{CF}\) (định lí Ta-let). (3)

- Xét △KDM có:

MD//BD (ABCD là hình bình hành).

=>\(\dfrac{DK}{BK}=\dfrac{MK}{CM}\) (định lí Ta-let). (4)

- Từ (3) và (4) suy ra:  \(\dfrac{CK}{CF}=\dfrac{MK}{CM}\)

=>\(\dfrac{CK}{CF}=\dfrac{MK}{CM}=\dfrac{CK+MK}{CF+CM}\) (t/c tỉ lệ thức).

=>\(\dfrac{CK}{CF}=\dfrac{CM}{CF+CM}\)

=>\(CK=\dfrac{CM.CF}{CF+CM}\)
=>\(\dfrac{1}{CK}=\dfrac{CF+CM}{CM.CF}\)

=>\(\dfrac{1}{CK}=\dfrac{1}{CF}+\dfrac{1}{CM}\)

Nguyễn Việt Lâm
30 tháng 1 2022 lúc 22:24

c.

Do \(\widehat{DBC}=\widehat{CBE}\Rightarrow BC\) là phân giác trong góc \(\widehat{DBE}\) trong tam giác BDE

Theo định lý phân giác: \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\) (1)

Trong tam giác MCD, do \(AF||CD\) nên theo định lý Talet:  \(\dfrac{AF}{CD}=\dfrac{MF}{MC}\)

Trong tam giác MCE, do \(BF||CE\) nên theo định lý Talet: \(\dfrac{BF}{CE}=\dfrac{MF}{MC}\)

\(\Rightarrow\dfrac{AF}{CD}=\dfrac{BF}{CE}\Rightarrow\dfrac{CE}{CD}=\dfrac{BF}{AF}\) (2)

(1);(2) \(\Rightarrow\dfrac{BF}{AF}=\dfrac{BE}{BD}\) (đpcm)

Nguyễn Việt Lâm
30 tháng 1 2022 lúc 22:38

d.

Do \(BI\perp BC\), mà BC là đường phân giác trong nên BC là phân giác ngoài góc \(\widehat{DBE}\) của tam giác BDE

Theo định lý phân giác: \(\dfrac{IE}{ID}=\dfrac{BE}{BD}\)

Theo câu c ta có \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\)

\(\Rightarrow\dfrac{IE}{ID}=\dfrac{CE}{CD}\Rightarrow IE.CD=ID.CE\)

Hoàng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2023 lúc 13:28

Xét hình bình hành ABCD có AC=BD

nên ABCD là hình chữ nhật

=>\(\widehat{BAD}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)

Zero Two
Xem chi tiết
Khanh Nguyễn Ngọc
17 tháng 9 2020 lúc 11:17

a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành

b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)

Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)

Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)

c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)

Khách vãng lai đã xóa