Căn -x2+6x-5 >8-2x
Căn(x+5).(3x+4) <4.(x-1)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI. CẢM ƠN
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
a) căn(x²+12)+5=3x+căn(x²+5)
b) 9(căn(4x+1)-căn(3x-2))=x+3
c) căn(2x+4)-2 căn(2x-1)=6x-4/căn(x²+4)
d) x²+9x+20=2 căn(3x+10)
Giải pt
a)căn x^2-4x+4=x+3
a)căn 9x^2+12x+4=4x
a)căn x^2-8x+16=4-x
a)căn 9x^2-6x+1-5x=2
a)căn 25-10x+x^2-2x=1
a)căn 25x^2-30x+9=x-1
a)căn x^2-6x+9-x-5=0
a)2x^2-căn 9x^2-6x+1=-5
b)căn x+5=căn 2x
b)căn 2x-1=căn x-1
b)căn 2x+5=căn 1-x
b)căn x^2-x=căn 3-x
b)căn 3x+1=căn 4x-3
b)căn x^2-x=3x-5
b)căn 2x^2-3=căn 4x-3
b)căn x^2-x-6=căn x-3
Giúp mình với ạ
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
giải ptvt:
căn (x^2-4x+5)+căn( x^2-4x+8)+căn (x^2-4x+9)= 3+căn 5
căn (2-x^2+2x)+căn(-x^2-6x-8)=1+căn 3
căn (9x^2-6x+2)+căn(45x^2-30x+9)=căn(6x-9x^2+8)
giải ptvt:
căn (x^2-4x+5)+căn( x^2-4x+8)+căn (x^2-4x+9)= 3+căn 5
căn (2-x^2+2x)+căn(-x^2-6x-8)=1+căn 3
căn (9x^2-6x+2)+căn(45x^2-30x+9)=căn(6x-9x^2+8)
Bạn nào giúp mình bài này được không ạ ?
a) căn ( 3x^2 + 6x + 7 ) + căn ( 5x^2 + 10x + 21 ) = 5 - 2x - x^2
b) căn ( 3x^2 + 6x + 12 ) + căn ( 5x^4 + 10x^2 + 9 ) = 3 - 4x - 2x^2
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)
mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)
từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1
b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)
=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')
mặt khác VP=5-2(x+1)2\(\le\)5(2')
từ (1') và (2')=> pt vô nghiệm
Giải các phương trình:
a) (căn bậc 4 của (57-x))+(căn bậc 3 của (x+40))=5
b) (2 căn bậc 3 của (6x-5))+(2 căn bậc 3 của (3x-2)) =8
giải phương trình :
a, căn bậc hai của (2-3x)=x+1
b,căn bậc hai của (x^2-2x+1) + căn bậc hai của x^2-4x+4=2
c, căn bậc hai của (3x^2-18x+28) + căn bậc hai của 4x^2- 24x+45 =6x-x^2 - 5