Chứng minh rằng các đa thức sau vô nghiệm
a, \(x^2+1\)
b, \(x^2+\left|x\right|+1\)
Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
Chứng minh rằng các phương trình sau có vô số nghiệm:
a) \(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x\right)+2\left(x-1\right)+2x+1\)
đây là hệ phương trình hay 2 phương trình khác nhau mà có dấu = lại ghi là các
Chứng minh đa thức sau vô nghiệm:
\(\left(x-4\right)^2+\left(x+5\right)^2\)
\(\left(x-4\right)^2+\left(x+5\right)^2\)
Nếu đa thức trên có nghiệm là n
\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí
Vậy đa thức trên không có nghiệm
Chứng minh đa thức: \(^{x^2+\left(x-1\right)^2}\)vô nghiệm
\(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow x^2+\left(x-1\right)^2\ge0\)
Dấu "=" khi: \(\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)(Điều này vô lý)
Vậy dấu "=" không thể xảy ra hay đa thức đã cho không nhận giá trị bằng 0 (vô nghiệm)
\(x^2+\left(x-1\right)^2\)
\(\hept{\begin{cases}x^2\ge0\forall x\\\left(x-1\right)^2\ge0\forall x\end{cases}\Rightarrow}x^2+\left(x-1\right)^2\ge0\forall x\)
=> Vô nghiệm ( đpcm )
Trả lời :
Do x2 > 0 \(\forall\)x
(x - 1)2 > 0 \(\forall\)x
=> x2 + (x - 1)2 \(\forall\)x
=> Đa thức vô nghiệm
Chứng tỏ rằng đa thức \(f\left(x\right)=-x^8+x^5-x^2+x+1\)vô nghiệm
không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp
1. Chứng minh rằng :
Đa thức \(P\left(x\right)=2x^2+2x+\frac{5}{4}\) VÔ NGHIỆM
Chứng minh rằng các đa thức sau vô nghiệm:
a/ K(x) = -4x2 - 2
b/ Q(x) = 2(x + 1)2 + 7
c/ M(x) = x2 + 4x + 12
a) K(x) = -4x2 - 2
\(x^2\ge0\forall x\Rightarrow-4x^2\le0\forall x\)
\(-2< 0\)
=> -4x2 - 2 < 0 => Vô nghiệm ( đpcm )
b) Q(x) = 2(x+1)2 + 7
\(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\)
7 > 0
=> 2(x+1)2 + 7 > 0 => Vô nghiệm ( đpcm )
c) cái này mình chịu nha TvT
a) Chứng minh rằng \(\forall\) x, phương trình sau vô nghiệm
\(\left|x-1\right|+\left|2-x\right|=-4x^2+12x-10\)
b)Cho phương trình: \(m^2+m^2x=4m+21-3mx\) (x là ẩn)
Tìm m để phương trình trên có nghiệm dương duy nhất.
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
Cho đa thức f(x)= \(\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)
và g(x)= \(ax^2+bx-4\)
a, Thu gọn đa thức f(x)
b, Tìm a và b của đa thức g(x) biết rằng g(x)=0 tại x=1 và x=4
c, Chứng minh g(x)=(1-x)(x-4)
d, Viết đa thức h(x) = f(x) + g(x) thành 1 tích
e, Tìm nghiệm của h(x) (tìm đủ các nghiệm)