Chứng minh rằng:
a/b=c/d⇒a−b/b=c−d/d
a. a/b=a/c chứng minh rằng a/c=a+b/c+d
b. a/b=c/d chứng minh rằng a/c=a-b/c-d
c. a/b=c/d chứng minh rằng a+b/a-b=c+d/c-d
Giúp em nó😊😊
chứng minh rằng : (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/c=b/d
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left[\left(a+d\right)+\left(b+c\right)\right]\left[\left(a+d\right)-\left(b+c\right)\right]\)
\(=-\left(b+c\right)^2+\left(a+d\right)^2\) ( 1 )
\(\left(a+b-c-d\right)\left(a-b+c-d\right)=\left(b-c\right)^2-\left(a-d\right)^2\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
\(b^2+2bc+c^2-a^2-2ad-d^2=a^2-2ad+d^2-b^2+2bc-c^2\)
\(4ad=4ac\Rightarrow ad=bc\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)( đpcm )
19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Chứng minh rằng : (a+b+c-d)(a-b-c-d) = (a+b-c+d)(a-b+c+d) thì (a+b)/(a-b) = (c-d)/(c+d)
Chứng minh rằng nếu:
(a + b + c + d) (a - b - c + d) = (a - b + c - d) (a + b - c - d)
thì\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
(a, b, c, d khác 0)
Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)
\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)
\(\Leftrightarrow ad=bc\)
hay \(\dfrac{a}{c}=\dfrac{b}{d}\)
Chứng minh rằng a/b = c/d nếu:
a+b/c+d = a - b/c-d
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=>(a+b)(c-d)=(a-b)(c+d)
=>ac-ad+bc-bd=ac+ad-bc-bd
=>-ad+bc=ad-bc
=>-2ad=-2bc
=>ad=bc
=>a/b=c/d
Chứng minh rằng: a) (a-b) + (c-d) = (a+b) - (b-d)
b) (a-b) - (c-d) = (a+d) - (b+c)
câu a sai đề nha!!
bài này bn chỉ cần bỏ ngoặc là ra hết thôi mà
a, đề của bạn sai
b, ta có : (a - b ) - (c - d ) = a - b -c -(- d )
= a - b - c + d
= (a + d ) + (-b - c )
=(a + d) - (b + c)
=> (a - b)-(c - d ) = (a + d) - (b + c)
Chứng minh rằng: (a+b)(c+d)-(a+d)(b+c)=(a-c)(d-b)
(a + b)(c + d) - (a + d)(b + c)
= ac + ad + bc + bd - ab - ac- bd - dc
= ad - ab + bc - dc
= a(d - b) + c(b- d)
= a(d - b) - c(d - b)
= (a - c)(d - b) (=vế phải)
Vậy đpcm
1)Cho a/a+b=c/c+d Chứng minh rằng: a/b= c/d 2)cho a/b=c/d, chứng minh rằng a)3a+2c/3b+2d=-5a+3c/-5b+3d b)a^2/b^2=2c^2-ac/2d^2-b-d NHANH NHA! MÌNH ĐANG CẦN GẤP!!!
cho a/b = b/c = c/d . chứng minh rằng ( a+b+c/b+c+d ) 3 3 = a/d
\(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) ; \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a^3}{b^3}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\dfrac{a}{d}\).