Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phú Quý Lê Tăng
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
19 tháng 9 2023 lúc 15:39

Gọi BM, CN là 2 đường trung tuyến của \(\Delta ABC\)

\( \Rightarrow \)MA = MC = \(\dfrac{1}{2}\)AC; NA = NB = \(\dfrac{1}{2}\)AB

Vì \(\Delta ABC\) cân tại A nên AB = AC ( tính chất)

Do đó, AM = MC = NA = NB

Xét \(\Delta \)ANC và \(\Delta \)AMB, ta có:

AN = AM

\(\widehat A\) chung

AC = AB

\( \Rightarrow \)\(\Delta \)ANC = \(\Delta \)AMB (c.g.c)

\( \Rightarrow \) NC = MB ( 2 cạnh tương ứng)

Vậy 2 đường trung tuyến ứng với 2 cạnh bên của tam giác cân là hai đoạn thẳng bằng nhau.

Vì \(∆ABC\) có hai đường trung tuyến \(BM\) và \(CN\) cắt nhau ở \(G\)

\(\Rightarrow \) \(G\) là trọng tâm của tam giác \(ABC\).

\(\Rightarrow  GB = \dfrac{2}{3}BM\); \(GC = \dfrac{2}{3}CN\) ( tính chất đường trung tuyến trong tam giác)

Mà \(BM = CN\) (giả thiết) nên \(GB = GC.\)

Tam giác \(GBC\) có \(GB = GC\) nên \(∆GBC\) cân tại \(G\).

\(\Rightarrow \) \(\widehat{GCB} = \widehat{GBC}\) (Tính chất tam giác cân).

Xét \(∆BCN\) và \(∆CBM\) có: 

+) \(BC\) là cạnh chung

+) \(CN = BM\) (giả thiết)

+) \(\widehat{GCB} = \widehat{GBC}\) (chứng minh trên)

Suy ra \(∆BCN = ∆CBM\) (c.g.c)

 \(\Rightarrow \) \(\widehat{NBC} = \widehat{MCB}\) (hai góc tương ứng).

\(\Rightarrow ∆ABC\) cân tại \(A\) (tam giác có hai góc bằng nhau là tam giác cân)

Phương Thảo Nguyễn
Xem chi tiết
Bùi phương nga
Xem chi tiết
kaitovskudo
9 tháng 1 2016 lúc 21:49

Chứng minh tam giác bằng nhau theo trường hợp c.h-g.n

Mà chúng là 2 cạnh tương ứng nên bằng nhau

Bùi phương nga
9 tháng 1 2016 lúc 22:08

biết rồi đó, bài này dễ thật

 

đồng thị khánh ly
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
16 tháng 2 2023 lúc 21:09

#\(N\)

`a,` `GT: AB = AC,` \(\widehat{B}=\widehat{C}\)

`CM: BB' = C``C'`

`BB'` là đường trung tuyến

`-> B'` là trung điểm của `AC`

`-> AB' = B'C` 

`C``C'` là đường trung tuyến

`-> C'` là trung điểm của `AB`

`-> AC' = C'B`

Tam giác `ABC` cân tại `A`

`-> AB = AC`

`-> AC' = AB' = C'B = B'C`

Xét Tam giác `BB'C` và Tam giác `C``C'B:`

`C'B = B'C`

\(\widehat{B}=\widehat{C}\)

`BC` chung

`=>` Tam giác `BB'C =` Tam giác `C``C'B (c-g-c)`

`=> BB' = C``C' (2` cạnh tương ứng `) (đpcm)`

`b, GT: AB' = B'C ; AC'=C'B ; C``C' = BB'`

`KL:` Tam giác `ABC` cân

`BB', C``C'` là đường trung tuyến

giả sử: `BB'` cắt `C``C'` tại `G`

`-> G` là trọng tâm của Tam giác `ABC`

`-> GB = 2/3 BB'`

`-> GC = 2/3 C``C'`

`BB' = C``C' -> GB = GC`

`->` Tam giác `GBC` cân tại `G`

`->`\(\widehat{B_1}=\widehat{C_1}\) 

Xét Tam giác `BB'C` và Tam giác `C``C'B` có:

`BB' = C``C'`

\(\widehat{B_1}=\widehat{C_1}\)

`BC` chung

`=>`Tam giác `BB'C =` Tam giác `C``C'B (c-g-c)`

`-> BC' = B'C`

`-> 1/2 AB = 1/2 AC`

`-> AB = AC`

`->` Tam giác `ABC` cân tại `A (đpcm)`.loading...

loading...

đồng thị khánh ly
16 tháng 2 2023 lúc 20:23

giúp mình với

 

Nguyễn Lê Phước Thịnh
16 tháng 2 2023 lúc 20:24

a: ΔABC cân tại A có BM,CN là các trung tuyến

Xét ΔABM và ΔACN có

AB=AC
góc A chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

b: Gọi G là giao của BM và CN

=>G là trọng tâm của ΔABC

=>GB=2/3BM; GC=2/3CN

mà BM=CN

nên GB=GC

=>góc GBC=góc GCB

Xét ΔNBC và ΔMCB có

NC=MB

BC chung

góc NCB=góc MBC

=>ΔNBC=ΔMCB

=>góc ABC=góc ACB

=>ΔBAC cân tại A

nguyễn thị kiều oanh
Xem chi tiết
Phạm Thị Huyền
Xem chi tiết
Thế Thành
Xem chi tiết
Lala school
Xem chi tiết
Mai Trung Nguyên
5 tháng 4 2019 lúc 20:08

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

๖Fly༉Donutღღ
Xem chi tiết
Trần Văn Nghiệp
2 tháng 5 2017 lúc 20:48

hình tự vẽ

tam giác cân ABC tại A

=>AB=AC, góc B=góc C

các đường trung tuyến BE và CF           (E thuộc AC, F thuộc AB)

Xét tam giác BEC và tam giác CFB

BC chung

góc C= góc B

EC=FB       (EC=1/2AC=1/2AB=FB)

=>tam giác BEC=CFB       (c.g.c)

=>BE=CF

Vậy trong tam giác cân hai đường trung tuyến ứng với hai cạn bên thì bằng nhau (BE=CF)

Doãn Thanh Phương
2 tháng 5 2017 lúc 20:04

Tk mk đi mk học lớp 8 và nằm trong đội tuyển toan lun đó tk đi rồi mk giải cho

_Guiltykamikk_
7 tháng 3 2018 lúc 21:23

GoiBF ; CE là các đường trung tuyến của∆ABC

Ta có AF=FC; AF+FC=AC

          AE=EB; AE+EB=AB

         AB=AC

Suy ra AE=AF

Xét ∆ABF và ∆ACE có

        AE=AF

        AB=AC

        Chung góc A

=) ∆ABF=∆ACE ( c-g-c )

=) BF=CE. ( đpcm )