Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
library
Xem chi tiết
Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 13:32

\(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

=1

Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 13:45

\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)

HUY hoàng nguyễn
Xem chi tiết
HUY hoàng nguyễn
23 tháng 12 2017 lúc 21:00

cảm ơn

Đinh Đức Hùng
23 tháng 12 2017 lúc 21:09

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có :

\(A=\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge\frac{4}{a^2+b^2+6ab+2}\)

Ta có : \(a^2+b^2+6ab+2=\left(a^2+2ab+b^2\right)+4ab+2=\left(a+b\right)^2+4ab+2=4ab+3\)

Áp dụng bđt \(xy\le\frac{\left(x+y\right)^2}{4}\) ta có : \(4ab+3\le4.\frac{\left(a+b\right)^2}{4}+3=\left(a+b\right)^2+3=1+3=4\)

\(\Rightarrow A\ge\frac{4}{a^2+b^2+6ab+2}\ge\frac{4}{4}=1\) có GTNN là 1

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Nguyễn acc 2
Xem chi tiết
Kudo Shinichi
23 tháng 12 2021 lúc 17:57

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

Thay a + b = 1 vào biểu thức trên ,có :

1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1

=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2

=1

Vậy biểu thức M có giá trị bằng 1 khi a + b = 1

Trần Đức Vinh
Xem chi tiết
Đinh Sơn Tùng
23 tháng 11 2023 lúc 22:06

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1
nhwos tick nha :D

Phạm Ngọc Mai
24 tháng 11 2023 lúc 9:15

�=�3+�3+3��(�2+�2)+6�2�2(�+�)

Biến đổi:

�2+�2=�2+2��+�2−2��=(�+�)2−2��

�3+�3=(�+�)(�2−��+�2)

Thay �+�=1 và phần biến đổi vào biểu thức, ta được:

�=(�+�)(�2−��+�2)+3��.[(�+�)2−2��]+6�2�2

⇒�=�2−��+�2+3��.[1−2��]+6�2�2

⇒�=�2−��+�2+3��−6�2�2+6�2�2

⇒�=�2+2��+�2

⇒�=(�+�)2

 

K.Hòa-T.Hương-V.Hùng
Xem chi tiết
Trần Quang Trung
7 tháng 11 2023 lúc 21:17

M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2

M=a2-ab+b2+3ab

M=(a+b)2=1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 6 2018 lúc 5:53

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1

mèo miu
27 tháng 7 2021 lúc 15:30

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab(a2+b2+2ab)=(a+b)(a2−ab+b2)+3ab(a2+b2+2ab)

=(a2−ab+b2)+3ab(a+b)2=(a2−ab+b2)+3ab(a+b)2

=a2−ab+b2+3ab=a2−ab+b2+3ab

=a2+2ab+b2=a2+2ab+b2

=(a+b)2=1

Nguyễn Long Vượng
Xem chi tiết
Đặng Ngọc Quỳnh
8 tháng 6 2021 lúc 14:09

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)

Theo đề bài:

\(a+b+3ab=1\)

\(\Leftrightarrow4\left(a+b\right)+12ab=4\)

\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)

\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)

\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)

\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)

\(\Leftrightarrow a+b\ge\frac{2}{3}\)

`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)

Áp dụng các kết quả trên, ta có:

\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)

\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)

Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)

\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)

Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)

Khách vãng lai đã xóa
Trần Điền
Xem chi tiết