Bài 9 : Cho parabol y = ax2 và điểm A(– 2 ; – 1)
a) Xác định hệ số a biết parabol đi qua điểm A.
b) Viết phương trình đường thẳng d tiếp xúc với parabol tại điểm A.
Bài 1 : Vẽ parabol và đường thẳng trên cùng một hệ trục tọa độ và tìm tọa độ giao điểm của chúng
Bài 2 : Cho hàm số : y = ax2 ( a ≠ 0 )
a ) Xác định a để đồ thị hàm số đi qua điểm A ( -1 ; 2 )
b ) Vẽ đồ thị hàm số vừa tìm được
c ) Tìm các điểm trên đồ thị có tung độ = 4
d ) Tìm các điểm trên đồ thị và cách đều 2 trục
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua hai điểm A(3; -4) và có trục đối xứng là x = -3/2
+ Parabol y = ax2 + bx + 2 có trục đối xứng x = –3/2
⇒ –b/2a = –3/2 ⇒ b = 3a (1)
+ Parabol y = ax2 + bx + 2 đi qua điểm A(3; –4)
⇒ –4 = a.32 + b.3 + 2 ⇒ 9a + 3b = –6 (2).
Thay b = 3a ở (1) vào biểu thức (2) ta được:
9a + 3.3a = –6 ⇒ 18a = –6 ⇒ a = –1/3 ⇒ b = –1.
Vậy parabol cần tìm là y = –1/3x2 – x + 2.
Cho parabol (P): y = a x 2 (a ≠ 0) đi qua điểm A (−2; 4) và tiếp xúc với đồ thị (d) của hàm số y = 2 (m – 1)x – (m – 1). Tọa độ tiếp điểm là:
A. (0; 0)
B. (1; 1)
C. A và B đúng
D. Đáp án khác
(P) đi qua điểm A (−2; 4) nên 4 = a. ( − 2 ) 2 = 4a a = 1
Vậy phương trình parabol (P) là y = x 2 .
Để (P) tiếp xúc với (d) thì phương trình hoành độ giao điểm
x 2 = 2 (m – 1)x – (m – 1)có nghiệm kép
↔ ∆ ’ = [ − ( m – 1 ) ] 2 − m + 1 = 0 ↔ m 2 – 2m + 1 − m + 1 = 0 ↔ m 2 – 3m + 2 = 0 ↔ m=1 hoặc m=2
Nếu m = 1 thì hoành độ giao điểm là x = 0. Vậy tiếp điểm là (0; 0)
Nếu m = 2 thì hoành độ giao điểm là x = 1. Vậy tiếp điểm là (1; 1)
Đáp án: C
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua hai điểm M(1; 5) và N(-2; 8)
+ Parabol y = ax2 + bx + 2 đi qua M(1 ; 5)
⇒ 5 = a.12 + b.1 + 2 ⇒ a + b = 3 (1) .
+ Parabol y = ax2 + bx + 2 đi qua N(–2; 8)
⇒ 8 = a.( –2)2 + b.( –2) + 2 ⇒ 4a – 2b = 6 (2).
Từ (1) và (2) suy ra: a = 2; b = 1.
Vậy parabol cần tìm là y = 2x2 + x + 2.
Cho parabol (P): y=ax2(a khác 0) đi qua điểm A(2;4). Tìm trên parabol các điểm cách O một khoảng bằng \(\sqrt{5}\)
Bài 4: cho parabol (P) : y = ax2
a) Tìm a biết (P) đi qua điểm C( -4;-4). Vẽ (P) với a vừa tìm được và vẽ đường thẳng (d)
y = \(\dfrac{x}{4}\)– 3 trên cùng mặt phẳng tọa độ
b) Tìm tọa độ điểm của (p) và (d) bằng phép tính
a: Thay x=-4 và y=-4 vào (P), ta được:
16a=-4
=>a=-1/4
=>y=-1/4x^2
b: PTHĐGĐ là:
-1/4x^2=1/4x-3
=>x^2=-x+12
=>x^2+x-12=0
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
=>y=-1/4*(-4)^2=4 hoặc y=-1/4*3^2=-9/4
Xác định Parabol (P): y = ax 2 + b x − 5 biết rằng Parabol đi qua điểm A (3; -4)và có trục đối xứng x = - 3 2
A. y = 1 18 x 2 + 1 6 x − 5
B. y = 1 18 x 2 + 1 6 x + 5
C. y = 3 x 2 + 9 x − 9
D. y = − 1 18 x 2 + 1 6 x − 5
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua điểm B(-1; 6) và tung độ của đỉnh là -1/4.
+ Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)
⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)
+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4
Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.
Phương trình có hai nghiệm b = 12 hoặc b = –3.
Với b = 12 thì a = 16.
Với b = –3 thì a = 1.
Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.
Xác định parabol (P): y = ax2 + bx + c biết rằng parabol (P) đi qua ba điểm A(1; 1), B(-1; -3) và O(0; 0).
A. y = x2 + 2x.
B. y = -x2 – 2x.
C. y = -x2 + 2x.
D. y = x2 – 2x.
Vì parabol đi qua ba điểm A, B, C nên ta có hệ phương trình:
Vậy (P): y = -x2 + 2x
Chọn C.
Trục đối xứng là x=-4
=>\(\dfrac{-\left(-6\right)}{2a}=-4\)
=>\(\dfrac{-6}{2a}=4\)
=>\(2a=-\dfrac{3}{2}\)
=>\(a=-\dfrac{3}{4}\)
=>(P): \(y=-\dfrac{3}{4}x^2-6x+c\)
Phương trình hoành độ giao điểm là:
\(-\dfrac{3}{4}x^2-6x+c=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot\dfrac{-3}{4}\cdot c\)
\(=36+3c\)
Để (P) cắt trục Ox tại 2 điểm phân biệt thì Δ>0
=>3c+36>0
=>3c>-36
=>c>-12
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{6}{-\dfrac{3}{4}}=6\cdot\dfrac{-4}{3}=-8\\x_1\cdot x_2=\dfrac{c}{a}=c:\dfrac{-3}{4}=-\dfrac{4}{3}c\end{matrix}\right.\)
Để (P) cắt trục Ox tại 2 điểm có độ dài bằng 4 thì \(\left|x_1-x_2\right|=4\)
=>\(\sqrt{\left(x_1-x_2\right)^2}=4\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\)
=>\(\sqrt{\left(-8\right)^2-4\cdot\dfrac{-4c}{3}}=4\)
=>\(\sqrt{64+\dfrac{16c}{3}}=4\)
=>\(\dfrac{16}{3}\cdot c+64=16\)
=>\(\dfrac{16}{3}\cdot c=-48\)
=>\(c=-48:\dfrac{16}{3}=-48\cdot\dfrac{3}{16}=-9\left(nhận\right)\)