Trục đối xứng là x=-4
=>\(\dfrac{-\left(-6\right)}{2a}=-4\)
=>\(\dfrac{-6}{2a}=4\)
=>\(2a=-\dfrac{3}{2}\)
=>\(a=-\dfrac{3}{4}\)
=>(P): \(y=-\dfrac{3}{4}x^2-6x+c\)
Phương trình hoành độ giao điểm là:
\(-\dfrac{3}{4}x^2-6x+c=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot\dfrac{-3}{4}\cdot c\)
\(=36+3c\)
Để (P) cắt trục Ox tại 2 điểm phân biệt thì Δ>0
=>3c+36>0
=>3c>-36
=>c>-12
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{6}{-\dfrac{3}{4}}=6\cdot\dfrac{-4}{3}=-8\\x_1\cdot x_2=\dfrac{c}{a}=c:\dfrac{-3}{4}=-\dfrac{4}{3}c\end{matrix}\right.\)
Để (P) cắt trục Ox tại 2 điểm có độ dài bằng 4 thì \(\left|x_1-x_2\right|=4\)
=>\(\sqrt{\left(x_1-x_2\right)^2}=4\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\)
=>\(\sqrt{\left(-8\right)^2-4\cdot\dfrac{-4c}{3}}=4\)
=>\(\sqrt{64+\dfrac{16c}{3}}=4\)
=>\(\dfrac{16}{3}\cdot c+64=16\)
=>\(\dfrac{16}{3}\cdot c=-48\)
=>\(c=-48:\dfrac{16}{3}=-48\cdot\dfrac{3}{16}=-9\left(nhận\right)\)