Vì parabol (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên A(2; 0) thuộc (P).
Thay x = 0; y = 2 vào phương trình parabol ta được 0 = 4a + 6 – 2 hay a = -1
Chọn D.
Vì parabol (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên A(2; 0) thuộc (P).
Thay x = 0; y = 2 vào phương trình parabol ta được 0 = 4a + 6 – 2 hay a = -1
Chọn D.
Tìm parabol (P): y = a x 2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
A. Y = x 2 + 3x − 2.
B. Y = − x 2 + x − 2.
C. Y = − x 2 + 3x − 3.
A. Y = − x 2 + 3x − 2.
Tìm Parabol y = a x 2 + 3x – 2, biết rằng parabol đó cắt trục Ox tại điểm có hoành độ bằng 2
A. y = x 2 + 3x – 2
B. y = - x 2 + x – 2
C. y = - x 2 + 3x – 3
D. y = - x 2 + 3x – 2
Cho parabol (P): y = a x 2 + bx + 2 biết rằng parabol đó cắt trục hoành tại hai điểm lần lượt có hoành độ x 1 = 1 và x 2 = 2 x 2 = 2. Parabol đó là:
A. y = 12 x 2 + x + 2.
B. y = − x 2 + 2x + 2.
C. y = 2 x 2 + x + 2.
D. y = x 2 −3x + 2.
Xác định parabol (P): y = a x 2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là −1 và 2, cắt trục Oy tại điểm có tung độ bằng −2.
A. Y = −2 x 2 + x − 2.
B. Y = − x 2 + x − 2.
C. Y = 1 2 x 2 + x − 2.
D. Y = x 2 – x − 2.
Tìm tất cả các giá trị mm để đường thẳng y = mx + 3 − 2m cắt parabol y = x 2 − 3x − 5 tại 2 điểm phân biệt có hoành độ trái dấu.
A. m < −3
B. −3 < m < 4
C. m < 4
D. m ≤ 4
Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol:
a) y = x2 - 3x + 2 ; b) y = -2x2 + 4x - 3;
c) y = x2 - 2x ; d) y = -x2 + 4.
Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol: y = x2 - 3x + 2
Tìm parabol (P): y = a x 2 + 3x − 2, biết rằng parabol có đỉnh I ( − 1 2 ; − 11 4 )
A. Y = x 2 + 3x − 2.
B. Y = x 2 + x − 4.
C. Y = 3 x 2 + x − 1.
D. Y = 3 x 2 + 3x − 2.
Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).