Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
Xác định parabol (P): y = a x 2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là −1 và 2, cắt trục Oy tại điểm có tung độ bằng −2.
A. Y = −2 x 2 + x − 2.
B. Y = − x 2 + x − 2.
C. Y = 1 2 x 2 + x − 2.
D. Y = x 2 – x − 2.
hoành độ giao điểm của đường thẳng y= 1- x và Parabol y = x2 - 2x + 1
tọa độ giao điểm của đường thẳng d: y= -x + 4 và Parabol y = x2 - 7x + 12
Tìm Parabol y = a x 2 + 3x – 2, biết rằng parabol đó cắt trục Ox tại điểm có hoành độ bằng 2
A. y = x 2 + 3x – 2
B. y = - x 2 + x – 2
C. y = - x 2 + 3x – 3
D. y = - x 2 + 3x – 2
Tìm Parabol (P): y=ax2+bx+c cắt trục hoành Ox tại 2 điểm có hoành độ lần lượt là -1 và 2, cắt trục tung Oy tại điểm có tung độ bằng -2.
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Đi qua hai điểm A(3; -4) và có trục đối xứng là x = -3/2
Xác định Parabol (P) : y = ax^2 + bx + c ( a khác 0 ) biết (P) đi qua :
a, điểm E (0; 6) và hàm số y = ax^2 - bx + c đạt giá trị nhỏ nhất là 4 khi x = -2
b, điểm F (1; 16) và cắt Ox tại các điểm có hoành độ là -1 và 5.
Xác định parabol y = 3x^2+bx+c, biết rằng parabol đó đi qua A(2;19) và nhận đường thẳng x = -2/3 làm trục đối xứng.
Tìm parabol (P): y = a x 2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
A. Y = x 2 + 3x − 2.
B. Y = − x 2 + x − 2.
C. Y = − x 2 + 3x − 3.
A. Y = − x 2 + 3x − 2.