giá trị của đa thức p=1/3x^2y+xy^2-xy+1/2xy/2-5xy-1/3x/2y khi x=0.5;y=1 là
cho đa thức p= 1/3x^2y+xy^2-xy+1/2xy^2-5xy-1/3x^2y tính giá trị của đa thức p khi x=2 và y=1
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)
Đề bài : Tính giá trị mỗi đa thức sau
A = 1/3x^2y + xy^2 - xy + 1/2xy^2 - 5xy - 1/3x^2y tại x = 1/2; y = 1
A=1/3x^2y-1/3x^2y+xy^2+1/2xy^2-xy-5xy
=3/2xy^2-6xy
`A=1/3x^2y+xy^2-xy+1/2xy^2-5xy-1/3x^2y`
`=(1/3x^2y-1/3x^2y)+(xy^2+1/2xy^2)-xy-5xy`
`=3/2xy^2-6xy`
Đề bài : Tính giá trị mỗi đa thức sau
A = 1/3x^2y + xy^2 - xy + 1/2xy^2 - 5xy - 1/3x^2y tại x = 1/2; y = 1
hỏi lại ạ!!!xlui mọi ng nhìu ạaa
A=1/3x^2y-1/3x^2y+xy^2-xy+1/2xy^2-5xy
=3/2xy^2-6xy
=3/2*1/2*1^2-6*1/2*1
=3/4-3=-9/4
`@` `\text {Ans}`
`\downarrow`
`A = 1/3x^2y + xy^2 - xy + 1/2xy^2 - 5xy - 1/3x^2y`
`= (1/3 x^2y - 1/3x^2y) + (xy^2 + 1/2xy^2) + (-xy - 5xy)`
`= 3/2 xy^2 - 6xy`
Thay `x = 1/2; y = 1` vào A
`A = 3/2* 1/2 * 1^2 - 6*1/2 * 1`
`= 3/4 - 3`
`= -9/4`
Vậy, `A = -9/4.`
Thu gọn đa thức sau
Q=x^2 + 2xy - 3x^3 + 2y^3+3x^3-y^3
P=1/3x^y+ xy^2-xy+1/2xy^2-5xy-1/3x^2y
\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)
\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)
giúp mik với
nhân các đa thức sau
a, (1/3x + 2 ) (3x - 6 )
b, (x^2 - 3x + 9 ) (x + 3 )
c, ( -2xy + 3 ) ( xy +1 )
d, x ( xy - 1 ) ( xy + 1 )
tính giá trị biểu thức
a, M = ( 3x + 2 ) ( 9x^2 - 6x + 4 ) tại x = 1/3
b, N = ( 5x - 2y ) ( 25x^2 + 10xy + 4y^2 ) tại x= 1/5 và y = 1/2
chứng minh giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến
A= ( x + 2 ) ( 3x - 1 )- x ( 3x + 3 ) - 2x + 7
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
Bài 3:
Ta có: \(A=\left(x+2\right)\left(3x-1\right)-x\left(3x+3\right)-2x+7\)
\(=3x^2-x+6x-2-3x^2-9x-2x+7\)
=5
cho 2 đa thức M =-xy^2+3x^2y -x^2y^2
N=1/2x2y-xy^2 + -2/3x^2y^2
a.Tính M+ N
b.Tìm Q biết N-Q=M
c ,Tính giá trị đa thức Q tại x=-1 y=1/2
a: Ta có: M+N
\(=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2+\dfrac{-2}{3}x^2y^2\)
\(=-2xy^2+\dfrac{7}{2}x^2y-\dfrac{5}{3}x^2y^2\)
b: Ta có: N-Q=M
nên \(Q=N-M\)
\(=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2\)
\(=\dfrac{-5}{2}x^2y+\dfrac{1}{3}x^2y^2\)
a) \(M+N=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2=\dfrac{7}{2}x^2y-2xy^2-\dfrac{5}{3}x^2y^2\)b) \(N-Q=M\Rightarrow Q=N-M=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2\)c) \(Q=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2=-\dfrac{5}{2}.\left(-1\right)^2.\dfrac{1}{2}+\dfrac{1}{3}.\left(-1\right)^2.\left(\dfrac{1}{2}\right)^2=-\dfrac{7}{6}\)
c: Thay x=-1 và \(y=\dfrac{1}{2}\) vào Q, ta được:
\(Q=-\dfrac{5}{2}\cdot1\cdot\dfrac{1}{2}+\dfrac{1}{3}\cdot1\cdot\dfrac{1}{4}\)
\(=-\dfrac{5}{4}+\dfrac{1}{12}\)
\(=-\dfrac{15}{12}+\dfrac{1}{12}=-\dfrac{14}{12}=-\dfrac{7}{6}\)
Giúp mik vs!
1/ Xếp các đơn thức sau thành từng nhóm các đơn thức đồng hạng
5/3x^2y; xy^2; -1/3x^2y; -2xy^2; x^2y;
1/4xy^2; -2/5x^2y; xy
2/ Tìm tổng của ba đơn thức: 25xy^2; 55xy^2 và 75 xy^2
3/ Tính giá trị của biểu thức sau tại x=1 và y=-1: 1/2x^5y-3/4x^5y+x^5y
nhóm 1: \(\dfrac{5}{3}x^2y;\dfrac{-1}{3}x^2y;x^2y;\dfrac{-2}{5}x^2y\)
nhóm 2: \(xy^2;-2xy^2;\dfrac{1}{4}xy^2\)
nhóm 3: xy
3. thay x=1 và y=-1 vào biểu thức ta đc:
\(\dfrac{1}{2}.1^5.\left(-1\right)-\dfrac{3}{4}1^5.\left(-1\right)1^5.\left(-1\right)=\dfrac{1}{4}\)
1) tìm các giá trị không thích hợp của x;y trong các giá trị sau
a) 3x^2y+5/(x-1)(y+2) b) 5xy/x-xy
2) viết một đa thức một biến có 2 hang từ mà hệ số cao nhất là 5 hệ số tự do là -1
3) tìm đa thức M và N biết
a) m+(-x^2+3x^2y)=2x^2-2x^2y-y^2
b) (7xyz-15x^2yz^2+xy^3)+n=0
cho đa thức M=2x^2y-xy^2+3x-2y và N=2xy^2-2x^2y-5x+2y
a) tính A=M+N,B=N-M
b) tính giá trị của đa thức B khi x=2 và y^2=16
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y