Tìm giá trị nhỏ nhất , giá trị lớn nhất của \(A=x^2+y^2\)biết :
\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
cho x, y là các số thục thỏa mãn \(x^2\left(x^2+2y^2-3\right)+\left(y-2\right)^2=1\) tìm giá trị lớn nhất và giá trị nhỏ nhất của \(C=x^2+y^2\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
A=(\(x\)-4)\(^2\)+1 B=\(\left|3x-2\right|\)-5 C=5-(2\(x\)-1)\(^4\)
D=-3(\(x\)-3)\(^2\)-(y-1)\(^2\)-2021 E=-\(\left|x^2-1\right|\)-(\(x\)-1)\(^2\)-y\(^2\)-2020
giúp mình với bài * khó quá
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
$E=-|x^2-1|-(x-1)^2-y^2-2020$
Ta thấy:
$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$
Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$
$\Leftrightarrow x=1; y=0$
Cho các số thực x,y thỏa mãn : \(x^4+y^4+x^2-3=2y^2\left(1-x^2\right).\)Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = \(x^2+y^2\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Cho x,y là các số thực. Tìm giá trị nhỏ nhất của biểu thức P = \(\left(x+2y+1\right)^2+\left(x+2y+5\right)^2\)
Đặt \(x+2y+1=a\)
\(P=a^2+\left(a+4\right)^2=2a^2+8a+16=2\left(a+2\right)^2+8\ge8\)
Tìm giá trị nhỏ nhất của \(A=x^2+y^2\)biết rằng \(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
câu này mình ra bằng 1 , đúng không vậy mấy bạn?
tìm các giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau( x,y thuộc Z)
\(E=-\left(x+1\right)^2-|2-y|+11\)
\(F=\left(x-1\right)^2+|2y+2|-3\)
\(G=\left(x+5\right)^2+\left(2y-6\right)^2+1\)
\(H=-3-\left(2-x\right)^2-\left(3-y\right)^2\)
\(I=5-|2x+6|-|7-y|\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
tìm giá trị lớn nhất của \(\left|x+2y+3z\right|\)
với (x^2+y^2+z^2=1)
\(A=\left|x+2y+3z\right|\Rightarrow A^2\le\left(1+2^2+3^2\right)\left(x^2+y^2+z^2\right)=14\Rightarrow A\le\sqrt{14}\)
\(max_A=\sqrt{14}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y}{2}=\dfrac{z}{3}\\x^2+y^2+z^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{14}};\sqrt{\dfrac{2}{7}};\dfrac{3}{\sqrt{14}}\right)\\\left(x;y;z\right)=\left(-\dfrac{1}{\sqrt{14}};-\sqrt{\dfrac{2}{7}};-\dfrac{3}{\sqrt{14}}\right)\end{matrix}\right.\)