Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Đồng Lạc
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2021 lúc 22:38

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2018 lúc 10:14

Ta có  n 2  (n + 1) + 2n(n + 1) = ( n 2  + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)

Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2

⇒ n(n + 1) ⋮ 2

n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3

⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1

vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n

Em Hơi Bị Học Ngu Chỉ Em...
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 22:52

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số nguyên liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)

hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)

Đặng Khánh Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2016 lúc 20:25

    n2 ( n + 1) +2n (n + 1 )

       = n (n + 1 ) ( n + 2 )

        Vì n ; n + 1 ; n + 2 là các số tự nhiên liên tiếp

           \(\Rightarrow\) n ( n + 1 ) ( n + 2 ) chia hết cho 6

            Vậy n2 ( n + 1 ) ( n + 2 ) luôn chia hết cho 6 với mọi giá trị của n

Hoàng Hải Yến
23 tháng 9 2016 lúc 20:25

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
Vậy ta được điều phải chứng minh

Hà thúy anh
23 tháng 9 2016 lúc 20:59

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1
Vậy ta được điều phải chứng minh

Huỳnh Tri Phương
Xem chi tiết
chudung133
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 23:14

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

Lấp La Lấp Lánh
2 tháng 10 2021 lúc 23:17

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

Trần Thị Thùy Dung
Xem chi tiết
Mạnh Châu
30 tháng 6 2017 lúc 22:03

Trần Thị Thùy Dung tham khảo đây nha:

Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath

............

Trần Thị Thùy Dung
Đồng Hồ Cát 3779
Xem chi tiết
Nhật Minh
22 tháng 6 2016 lúc 20:01

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

Nhật Minh
22 tháng 6 2016 lúc 20:04

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

Hải Annh
22 tháng 6 2016 lúc 20:34

Toán lớp 8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2019 lúc 3:53