Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Trang
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 12 2016 lúc 23:17

\(P=\frac{\sqrt{a-2015}}{a}+\frac{\sqrt{b-2017}}{b}+\frac{\sqrt{c-2019}}{c}\)

Áp dụng BĐT Cauchy : \(\sqrt{\left(a-2015\right).2015}\le\frac{a-2015+2015}{2}\Rightarrow\frac{\sqrt{a-2015}}{a}\le\frac{1}{2\sqrt{2015}}\)

Tương tự : \(\frac{\sqrt{b-2017}}{b}\le\frac{1}{2\sqrt{2017}}\) ; \(\frac{\sqrt{c-2019}}{c}\le\frac{1}{2\sqrt{2019}}\)

Cộng theo vế được \(P\le\frac{1}{2}\left(\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2017}}+\frac{1}{\sqrt{2019}}\right)\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a=4030\\b=4034\\c=4038\end{cases}}\)

Vậy .......................................................................

Bạn chú ý thêm điều kiện cho bài toán nhé :)

Hoàng Trang
20 tháng 12 2016 lúc 9:37

cảm ơn ạ

Bùi Đức Anh
Xem chi tiết
Etermintrude💫
7 tháng 3 2021 lúc 21:33

undefined

Ánh Right
Xem chi tiết
Luân Đào
25 tháng 10 2019 lúc 18:02

Có vài cách giải nhưng mình thấy cách này nhanh và đẹp ne.

\(\sqrt{2017a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(c+a\right)}\le\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\frac{a}{a+\sqrt{2017a+bc}}\le\frac{a}{a+\sqrt{ab}+\sqrt{bc}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự rồi cộng lại, ta được:

\(P\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

Dấu "=" khi \(a=b=c=\frac{2017}{3}\)

Khách vãng lai đã xóa
VUX NA
Xem chi tiết
黃旭熙.
4 tháng 9 2021 lúc 20:01

Áp dụng BĐT Bunhiacopxki ta có: 

\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=3\left(2a+2b+2c\right)=3.2\left(a+b+c\right)=6.2021=12126\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{12126}\)

Dấu ''='' xảy ra khi \(a=b=c=\dfrac{2021}{3}\)

Thầy Tùng Dương
Xem chi tiết
Vũ Ngọc Anh
9 tháng 5 2022 lúc 11:06

\(P=\sqrt{a+b}+\sqrt{b+c}\sqrt{c+a}\)

Aps dụng Bunhia-cốpxki : \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126\Leftrightarrow P=\sqrt{12126}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

(Refer ;-;)

Nguyễn Long Vượng
Xem chi tiết
Hoàng Như Quỳnh
23 tháng 6 2021 lúc 19:05

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

áp dụng bunhia - cốpxki

\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126< =>P=\sqrt{12126}\)

vậy MAX P=\(\sqrt{12126}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
24 tháng 6 2021 lúc 22:59

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

Áp dụng BĐT Bunyakovsky ta có:

\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)

\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
24 tháng 6 2021 lúc 23:05

Ta có: \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(=2\left(a+b+c\right)+2\left[\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(b+c\right)\left(c+a\right)}+\sqrt{\left(c+a\right)\left(a+b\right)}\right]\)

\(=4042+2\left[\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(b+c\right)\left(c+a\right)}+\sqrt{\left(c+a\right)\left(a+b\right)}\right]\)

Mà \(\left(a+b\right)\left(b+c\right)\ge\left(0+b\right)\left(b+0\right)=b^2\)

và \(\left(b+c\right)\left(c+a\right)\ge c^2\) ; \(\left(c+a\right)\left(a+b\right)\ge a^2\)

\(\Rightarrow P\ge4042+2\left(a+b+c\right)=4042+4042=8084\)

\(\Rightarrow P\ge2\sqrt{2021}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=2021\\b=c=0\end{cases}}\) và các hoán vị của nó

Vậy \(Min\left(P\right)=2\sqrt{2021}\Leftrightarrow\hept{\begin{cases}a=2021\\b=c=0\end{cases}}\)

Khách vãng lai đã xóa
Ctuu
Xem chi tiết
Người Vô Danh
14 tháng 3 2022 lúc 22:38

ko biết mk làm có đúng ko nhma có gì sai thì đừng trách mk nhé

\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{63}{a^2+b^2+c^2}\)

\(6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{a}{ac}\right)+2021\ge\dfrac{54}{ab+bc+ac}+2021\ge\dfrac{54}{a^2+b^2+c^2}+2021\)

<=>\(\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{2021}{9}\)

\(p^2=\left(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\right)^2\)

áp dụng bđt \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

\(p^2\le3.\left(\dfrac{1}{3\left(2a^2+b^2\right)}+\dfrac{1}{3\left(2b^2+c^2\right)}+\dfrac{1}{3\left(2c^2+a^2\right)}\right)=\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\)

\(< =>p^2\le\dfrac{9}{2a^2+b^2+2b^2+c^2+2c^2+a^2}\)

<=> \(p^2\le3.\dfrac{1}{a^2+b^2+c^2}=\dfrac{2021}{3}< =>p\le\sqrt{\dfrac{2021}{3}}\)

dấu bằng xảy ra khi \(a=b=c=\sqrt{\dfrac{3}{2021}}\)

Nguyễn Việt Lâm
15 tháng 3 2022 lúc 12:33

\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2021\)

\(\Rightarrow2021\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le\sqrt{2021.3}=\sqrt{6063}\)

Từ đó:

\(\sqrt{3\left(2a^2+b\right)}=\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)

\(\Rightarrow\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\dfrac{1}{2a+b}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\)

Tương tự: \(\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(\Rightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{\sqrt{6063}}{3}\)

\(P_{max}=\dfrac{\sqrt{6063}}{3}\) khi \(a=b=c=\dfrac{3}{\sqrt{6063}}\)

Đỗ Nguyễn Thu Hiền
Xem chi tiết
chikaino channel
9 tháng 5 2018 lúc 15:01

hình như bạn ghi sai ồi 

shitbo
30 tháng 6 2020 lúc 7:55

\(S=\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\Leftrightarrow3\left(a-b\right)^2\ge0\)

do đó: \(S\ge\frac{1}{2}a+\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}c=2019\)

Khách vãng lai đã xóa
Trần Phương Anh
Xem chi tiết
BTVCONGANH
14 tháng 5 2023 lúc 15:37

 

BTVCONGANH
14 tháng 5 2023 lúc 15:37

oki