PT đường thẳng đi qua điểm M(5;-3) và cắt 2 trục tọa độ tại 2 điểm A và B sao cho M là trung điểm của AB
Viết pt tổng quát của đường thẳng d
a) Đi qua điểm M(-2;-5) và song song với đường phân giác góc phần tư thứ nhất
b) Đi qua điểm M(3;-1) và vuông góc với đường phân giác góc phần tư thứ hai
c) Viết pt tham số của đg thẳng d đi qua điểm M(-4;0) và vuông góc với đường phân giác thứ hai
a, Đường phân giác góc phần tư thứ nhất là một nửa đường thẳng x - y = 0 nằm ở góc phần tư thứ nhất
=> d nhận (1 ; -1) làm vecto pháp tuyến
=> PT đi qua M (-2 ; -5) là
x + 2 - y - 5 = 0 ⇔ x - y - 3 = 0
b, c, Lười lắm ko làm đâu :)
Viết PT đường thẳng song song với đường thẳng y = -2x+5 và thỏa mãn âm điều kiện
a, Đi qua góc tọa độ
b, Đi qua điểm A ( -1,10)
Lời giải:
Vì PTĐT cần tìm song song với đường thẳng $y=-2x+5$ nên hệ số góc của đường thẳng đó bằng $-2$
Khi đó gọi PTĐT cần tìm là $d: y=-2x+m$
a) $d$ đi qua gốc tọa độ, nghĩa là $d$ đi qua điểm $(0;0)$
Do đó $0=-2.0+m\Leftrightarrow m=0$
Vậy PTĐT cần tìm là $y=-2x$
b) $d$ đi qua điểm $A(-1;10)$
$\Rightarrow y_A=-2x_A+m\Leftrightarrow 10=-2(-1)+m\Leftrightarrow m=8$
Vậy PTĐT cần tìm là $y=-2x+8$
lập pt đường thẳng d biết:đi qua A(2;1) và đi qua giao điểm của 2 đường thẳng y=-x+5 và y=2x-3 .
Gọi giao điểm của hai đường thắng y = -x+5 và y = 2x - 3 là M(x1;y1)
Hoành độ giao điểm của hai đường thẳng y = -x+5 và y =2x-3 là nghiệm của phương trình : -x + 5 = 2x - 3
=> 3x = 8
=> \(x=\dfrac{8}{3}\)
=> \(y=-\dfrac{8}{3}+5=\dfrac{7}{3}\)
=> M(\(\dfrac{8}{3};\dfrac{7}{3}\))
Đường thẳng (d) có dạng : y = ax + b (a\(\ne\)0)
Để đường thẳng (d) đi qua A(2;1)
=> 1 = a.2 + b
=> 2a + b = 1 (1)
Để đường thẳng (d) đi qua M(\(\dfrac{8}{3};\dfrac{7}{3}\))
=> \(\dfrac{7}{3}=a\cdot\dfrac{8}{3}+b\)
=> \(\dfrac{8}{3}a+b=\dfrac{7}{3}\) (2)
Từ (1) và (2) suy ra : a = 2; b = -3
Vậy (d) : y = 2x - 3
viết pt đường thẳng (d) đi qua điểm B(0;m) và song song với đường thẳng x+2y=1
Lời giải:
Gọi PTĐT $(d)$ là $y=ax+b$
$x+2y=1$
$\Leftrightarrow y=\frac{-1}{2}x+1$
Vì $(d)$ song song với $(y=\frac{-1}{2}x+1)$ nên $a=\frac{-1}{2}$
$(d)$ đi qua $B(0,m)$ nên:
$y_B=ax_B+b$
$\Leftrightarrow m=\frac{-1}{2}.0+b\Leftrightarrow b=m$
Vậy $(d):y=\frac{-1}{2}x+m$ là ptđt cần tìm.
Cho A ( 1; 3 ), B( 4; -1 ), (d) x = 2y+1
a, Viết pt đường thẳng qua A, B
b, Viết pt đường thẳng đi qua A và cắt trục hoành tại điểm có tung độ = -1
c, Viết pt đường thẳng qua A và có hệ số góc là 5
d, Viết pt đường thẳng qua A song song với (d)
e, Viết pt đường thẳng qua A vuông góc với (d)
(d): 2y+1=x
=>2y=x-1
=>y=1/2x-1/2
a: Gọi (d1): y=ax+b là phương trình đường thẳng AB
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\4a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{3}\\b=3-a=3+\dfrac{4}{3}=\dfrac{13}{3}\end{matrix}\right.\)
c: Gọi (d2): y=ax+b là phương trình đường thẳng cần tìm
Vì (d2) có hệ số góc là 5 nên a=5
Vậy: (d2): y=5x+b
Thay x=1 và y=3 vào (d2), ta được:
b+5=3
hay b=-2
d: Gọi (d3): y=ax+b là phương trình đường thẳng cần tìm
Vì (d3)//(d) nên a=-1/2
Vậy: (d3): y=-1/2x+b
Thay x=1 và y=3 vào (d3), ta được;
b-1/2=3
hay b=7/2
viết pt đường thẳng đi qua gốc tọa độ và điểm M (2;4)
Đặt phương trình đường là \(y=ax+b\)
\(O\left(0;0\right)\in y\Leftrightarrow b=0\left(1\right)\)
\(M\left(2;4\right)\in y\Leftrightarrow2a+b=4\Leftrightarrow a=\dfrac{4-b}{2}\)
\(\left(1\right)\Rightarrow a=2\)
Vậy phương trình đường thẳng thỏa đề bài là \(y=2x\)
xét các đường thẳng d có pt: (2m+3)x + (m+5)y + (4m-1) = 0( m là tham số)
tìm điểm cố định mà mọi đường thẳng d đều đi qua
Lời giải:
Gọi điểm cố định đó là $(x_0;y_0)$
Điểm cố định mà mọi đường thẳng $d$ đều đi qua là điểm mà khi thay giá trị $x,y$ vào ptđt thì thỏa mãn với mọi $m$
Như vậy:
\((2m+3)x_0+(m+5)y_0+(4m-1)=0, \forall m\)
\(\Leftrightarrow m(2x_0+y_0+4)+(3x_0+5y_0-1)=0, \forall m\)
\(\Rightarrow \left\{\begin{matrix} 2x_0+y_0+4=0\\ 3x_0+5y_0-1=0\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x_0=-3\\ y_0=2\end{matrix}\right.\) (giải hệ phương trình 2 ẩn đơn giản )
Vậy điểm cố định mà đường thẳng d luôn đi qua là $(-3;2)$
viết pt đường thẳng đi qua gốc tọa độ O va điểm M(2;4)
gọi dg thẳng đó là y = ax + b
Thay tọa độ điểm O và điểm M vào đt y = ax + b ta dc:
b = 0 và 2a + b = 4
Thay b = 0 vào pt 2a + b = 4 ta dc 2a = 4 => a = 2
vậy đt đó là y = 2x
Viết pt đường thẳng biết :
a) Đường thẳng đi qua 2 điểm P(-1;-3) và Q(2;2)
b) Đường thẳng đi qua điểm M(-2;3) và có tung độ gốc bằng 4
c) Đường thẳng cắt trục tung tại điểm có tung độ bằng 1/2 và cắt trục hoành tại điểm có hoành độ bằng 2