Tính giá trị của những đa thức sau với x+y-2=0.
E=x3+x2y-2x2-xy2+2xy+2y+2x-2-x2y
Tính giá trị của các biểu thức: x3 + x2y + xy2 + 2xy(x + y)
biết x + y = 2
Đề sai r bn, nếu x,y thay đổi thì tổng biểu thức cũng thay đổi
Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
Cho đa thức A = 5 x2y + xy – xy2 - x2y + 2xy + x2y + xy + 6. Thu gọn rồi xác định bậc của đa thức.
a/ Tìm đa thức B sao cho A + B = 0
b/ Tìm đa thức C sao cho A + C = -2xy + 1
Bài 6: Cho đa thức F(x) = 2x3 – x5 + 3x4 + x2 - x3 + 3x5 – 2x2 - x4 + 1
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Bài : Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0.
Help me !
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
A=x3 + x2y-xy2-y3+x2-y2+2x+2x+3
Tìm giá trị của đa thức A biết x+y= -1
Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)
\(=-x^2+y^2+\left(-x+y\right)-2+3\)
\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)
\(=\left(x-y\right)\left(-x-y-1\right)+1\)
\(=\left(x-y\right)\left(1-1\right)+1=1\)
Tính giá trị của biểu thức:
A=2x+xy2-x2y-2y với x=-\(\dfrac{1}{2}\) và y=-\(\dfrac{1}{3}\)
\(A=2x+xy^2-x^2y-2y\)
\(=2\left(x-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left(2-xy\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{-1}{3}\right)\left(2-\dfrac{-1}{2}\cdot\dfrac{-1}{3}\right)\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\left(2-\dfrac{1}{6}\right)\)
\(=\dfrac{-1}{6}\cdot\dfrac{11}{6}=-\dfrac{11}{36}\)
Cho hệ phương trình x 3 - y 3 - x 2 y + x y 2 - 2 x y - x + y = 0 x - y = x 3 - 2 x 2 + y + 2 Số nghiệm của hệ phương trình là:
A. 2
B. 1
C. 0
D. 3
Cho hai đa thức A = x 2 y - x y 2 + 3 x 2 , B = x 2 y + x y 2 - 2 x 2 - 1 . Tính đa thức A + 2B.
A. 2 x 2 y + x y 2 - x 2 - 2
B. 3 x 2 y - x 2 - 2
C. 3 x 2 y + x y 2 - x 2 - 2
D. 2 x 2 y + x y 2 - x 2 - 2
Ta có A + 2B = (x2y - xy2 + 3x2) + 2(x2y + xy2 - 2x2 - 1)
= x2y - xy2 + 3x2 + 2x2y + 2xy2 - 4x2 - 2
= 3x2y + xy2 - x2 - 2. Chọn C
Giá trị của biểu thức D = x 3 – x 2 y – x y 2 + y 3 khi x = y là
A. 3
B. 2
C. 1
D. 0
D = ( x 3 + y 3 ) – x y ( x + y ) = ( x + y ) ( x 2 – x y + y 2 ) – x y ( x + y ) = ( x + y ) ( x 2 – x y + y 2 – x y ) = ( x + y ) [ x ( x – y ) – y ( x – y ) ] = ( x + y ) ( x – y ) 2
Vì x = y ó x – y = 0 nên D = ( x + y ) ( x – y ) 2 = 0
Đáp án cần chọn là: D
Bài 3* : Tính giá trị các biểu thức sau:
a) 3x4 + 5x2y2 + 2y4 + y2 biết rằng x2 + y2 = 1
b) 7x - 7y + 4ax - 4ay - 5 biết x - y = 0
c) x3 + xy2 - x2y - y3 + 3 biết x - y = 0
d) x2 + 2xy + y2 - 4x - 4y + 1 biết rằng x + y = 3
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2