Chứng minh rằng \(5^{27}< 2^{63}< 5^{28}\)
chứng minh 5^27<2^63<5^28
Ta có: 527=(53)9=1259<1289=(27)9=263
=>527<263(1)
Lại có: 263<264=(216)4=655364<781254=(57)4=528
=>263<264<528
=>263<528(2)
Từ (1) và (2) ta thấy:
527<263<528
=>ĐPCM
cuong nay to ko hieu cho lai co ...........78125 mu 4 mong ban giai thich nhe
bye
Chứng minh rằng : 5^27 < 2^63 < 5^28.
527 = (53)9 = 1259 < 1289 = (27)9 = 263
263 = (29)7 = 5127 < 6257 = (54)7 = 528
Chứng minh rằng
527<263<228
Chứng minh 527<263<528
chứng minh 263 lớn hơn 527 và nhỏ hơn 528
Chứng minh răng : 5^27 < 2^63 <5^28
chứng tỏ rằng : 527 < 263 <528
ta có :
527 = 53.9 = ( 53 )9 = 1259 < 1289 = 27.9 = ( 27 ) 9 = 263
=> 527 < 263 ( 1 )
lại có : 263 < 264 = 216.4 = ( 216 )4 = 655364 < 781254 = 57.4 = ( 57 ) 4 = 528
=> 263 < 264 < 528
=> 263 < 528 ( 2 )
từ ( 1 ) và ( 2 ) ta thấy :
527 < 263 < 528
( đpcm )
Nguyễn Đức Minh Triết ơi, hãy nhập câu hỏi của bạn vào đây...
Chứng tỏ rằng : \(5^{27}\) <\(2^{63}\) <\(5^{28}\)
So sánh
a, A=1+2+\(2^2\) +...+\(2^4\) và B=\(2^5\) -1
b, C= 3+\(3^2\) +...+\(3^{100}\) và D= \(\dfrac{3^{101}-3}{2}\)
2:
a: A=1+2+2^2+2^3+2^4
=>2A=2+2^2+2^3+2^4+2^5
=>A=2^5-1
=>A=B
b: C=3+3^2+...+3^100
=>3C=3^2+3^3+...+3^101
=>2C=3^101-3
=>\(C=\dfrac{3^{101}-3}{2}\)
=>C=D
Ta có:
\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)
\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)
\(a.5^{27}=\left(5^3\right)^9=125^9\\ 2^{63}=\left(2^7\right)^9=128^9\)
Vì 1289 > 1259 => 263 > 527
\(5^{28}=\left(5^4\right)^7=625^7\\ 2^{63}=\left(2^9\right)^7=512^7\)
Vì 6257 > 5127 = > 528 > 263
Đã CMR: \(5^{27}< 2^{63}< 5^{28}\)
\(b.A=1+2+2^2+2^3+2^4\\ 2A=2+2^2+2^3+2^4+2^5\\ 2A-A=\left(2+2^2+2^3+2^4+2^5\right)-\left(1+2+2^2+2^3+2^4+\right)\\ A=2^5-1\\ 2^5-1=2^5-1=>A=B\\ c,C=3+3^2+....+3^{100}\\ 3C=3^2+......+3^{101}\\ 3C-C=\left(3^2+...+3^{101}\right)-\left(3+...+3^{100}\right)\\ 2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}\\ \dfrac{3^{101}-3}{2}=\dfrac{3^{101}-3}{2}=>C=D\)
cm rằng :527<263<528
Ta có: \(5^{27}=\left(5^3\right)^9=125^9\)
\(2^{63}=\left(2^7\right)^9=128^9\)
Mà \(128^9>125^9\)
=> \(5^{27}<2^{63}\) (1)
Ta có: \(5^{28}=\left(5^4\right)^7=625^7\)
\(2^{63}=\left(2^9\right)^7=512^7\)
Mà \(512^7<625^7\)
=> \(2^{63}<5^{28}\) (2)
Từ (1) và (2):
=> \(5^{27}<2^{63}<5^{28}\left(đpcm\right)\)
Chứng minh rằng :
527 < 263 < 525