Bài 8: Chia hai lũy thừa cùng cơ số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuệ Lâm Nguyễn

Chứng tỏ rằng : \(5^{27}\) <\(2^{63}\) <\(5^{28}\)

So sánh 

a, A=1+2+\(2^2\) +...+\(2^4\) và B=\(2^5\) -1 

b, C= 3+\(3^2\) +...+\(3^{100}\) và D= \(\dfrac{3^{101}-3}{2}\)

Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 20:35

2:

a: A=1+2+2^2+2^3+2^4

=>2A=2+2^2+2^3+2^4+2^5

=>A=2^5-1

=>A=B

b: C=3+3^2+...+3^100

=>3C=3^2+3^3+...+3^101

=>2C=3^101-3

=>\(C=\dfrac{3^{101}-3}{2}\)

=>C=D

IamnotThanhTrung
21 tháng 8 2023 lúc 20:43

Ta có: 

\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)

\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)

boi đz
21 tháng 8 2023 lúc 20:52

 \(a.5^{27}=\left(5^3\right)^9=125^9\\ 2^{63}=\left(2^7\right)^9=128^9\)

Vì 1289 > 125=> 263 > 527

\(5^{28}=\left(5^4\right)^7=625^7\\ 2^{63}=\left(2^9\right)^7=512^7\)

Vì 6257 > 5127 = > 528 > 263

Đã CMR: \(5^{27}< 2^{63}< 5^{28}\)

\(b.A=1+2+2^2+2^3+2^4\\ 2A=2+2^2+2^3+2^4+2^5\\ 2A-A=\left(2+2^2+2^3+2^4+2^5\right)-\left(1+2+2^2+2^3+2^4+\right)\\ A=2^5-1\\ 2^5-1=2^5-1=>A=B\\ c,C=3+3^2+....+3^{100}\\ 3C=3^2+......+3^{101}\\ 3C-C=\left(3^2+...+3^{101}\right)-\left(3+...+3^{100}\right)\\ 2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}\\ \dfrac{3^{101}-3}{2}=\dfrac{3^{101}-3}{2}=>C=D\)


Các câu hỏi tương tự
le thu quynh
Xem chi tiết
Bùi Minh Trí
Xem chi tiết
đặng khánh huyền
Xem chi tiết
Linh Ngô
Xem chi tiết
Phạm Ngọc Quỳnh Anh
Xem chi tiết
đặng khánh huyền
Xem chi tiết
Nguyễn Phước Thiện Lộc
Xem chi tiết
đặng khánh huyền
Xem chi tiết
Taogalam
Xem chi tiết