Cho x,y >1. Tìm GTNN của A = \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
cho x,y>0 và x+y=1 . tìm GTNN, GTLN của A=\(\frac{x}{y+1}\)+\(\frac{y}{x+1}\)
cho x,y,z >0 và xyz=1 tìm GTNN của A=\(\frac{x^2}{1+y}\)+\(\frac{y^2}{1+z}\)+\(\frac{z^2}{1+x}\)
a, Cho x,y,z >0 thỏa điều kiện x+y+z=3. Tìm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
b, cho x >1 , y>1. Tìm GTNN của A=\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2
\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)( \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))
=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0
cho x,y>0 và x+y<=1.TÌM GTNN của \(A=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\)
Áp dụng bất đẳng thức Cô - si vào 2 số dương \(x^2,\frac{1}{x^2}\)ta có:
\(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}=2\)\(\left(1\right)\)
Áp dụng bất đẳng thức Cô - si vào hai số dương \(y^2,\frac{1}{y^2}\)ta có :
\(y^2+\frac{1}{y^2}\ge2\sqrt{y^2.\frac{1}{y^2}}=2\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\ge4\)
\(\Rightarrow\)\(A_{min}=4\Leftrightarrow x=y=1\)
Có lẽ là thế này ạ,sai đừng trách em (em mới lớp 7 thôi)
Ta dự đoán xảy ra cực trị tại x = y = 1/2.Ta biến đổi như sau:
\(A=\left(x^2+\frac{1}{4}\right)+\left(y^2+\frac{1}{4}\right)+\left(\frac{1}{x^2}+4\right)+\left(\frac{1}{y^2}+4\right)-\frac{17}{2}\)
Áp dụng BĐT Cô si (AM- GM) cho các biểu thức trong ngoặc,ta được:
\(A\ge2\sqrt{\frac{x^2.1}{4}}+2\sqrt{\frac{y^2.1}{4}}+2\sqrt{\frac{1}{x^2}.4}+2\sqrt{\frac{1}{y^2}.4}-\frac{17}{2}\)
\(=\left(x+y\right)+2\left(\frac{2}{x}+\frac{2}{y}\right)-\frac{17}{2}\)
\(=\left(x+y\right)+4\left(\frac{1}{x}+\frac{1}{y}\right)-\frac{17}{2}\ge16\left(x+y\right)+\frac{16}{x+y}-15\left(x+y\right)-\frac{17}{2}\)
\(\ge2\sqrt{16\left(x+y\right).\frac{16}{x+y}}-15.1-\frac{17}{2}\)
\(=2.16-\frac{47}{2}=32-\frac{47}{2}=\frac{17}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Vậy...
1) Cho x, y các số dương thỏa mãn x + y + xy = 8. Tìm GTNN của biểu thức P= x2 + y2
2) Cho x, y > 0, x + y = 1. Tìm GTNN của \(N=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
3) Cho x, y, z là các số dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Bài 1 : Cho x,y,z không âm thỏa mãn \(\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+6}=1\)
Tìm GTNN của A = \(x+y+z+\frac{1}{x+y+z}\)
Bài 2 : Cho \(a\ge3,b\ge4\)
Tìm GTNN của P = \(\frac{a^2+1}{a}+\frac{b^2+1}{b}\)
1) Cho x,y dương. Tìm GTNN của:
\(P=\frac{x^2+12}{x+y}+y\)
2) Cho a,b>0 thỏa a^2+b^2=1.
Tìm GTNN của \(A=\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
Cho x, y dương sao cho x + y = 1. Tìm GTNN của \(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
\(A=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{x^2y^2-x^2-y^2+1}{x^2y^2}=\frac{x^2y^2-x^2-y^2+\left(x+y\right)^2}{x^2y^2}=\frac{x^2y^2+2xy}{x^2y^2}\)\(=1+\frac{2}{xy}\)
Ta có BĐT: \(\left(x+y\right)^2\ge4xy;\forall x,y>0\)
Đẳng thức xảy ra khi và chỉ khi x=y.
\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)
Có: \(A=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=1+8=9\)
Vậy GTNN của A=9 khi x=y=1/2
cho x,y>0;thỏa mãn x+y=1. Tìm GTNN của \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2
Bài 1:Cho x>0;y>0 và \(x+y\le1\) tìm GTNNc của các bt sau
a,\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(b,B=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Bà 2:Cho x+y=1 tìm GTNN của bt
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bài 3:Cho x+y+z=3
a,Tìm GTNN của bt \(A=x^2+y^2+z^2\)
b,Tìm GTLN của bt \(B=xy+yz+xz\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
2/
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)