Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 23:23

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-x_2^2-2x_2+2}{x_1-x_2}\)

\(=\left(x_1+x_2\right)-2\)

Vì \(x_1;x_2\in\left(-\infty;1\right)\) thì \(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Leftrightarrow\left(x_1+x_2\right)< 2\)

\(\Leftrightarrow\left(x_1+x_2\right)-2< 0\)

Vậy: Hàm số nghịch biến trên \(\left(-\infty;1\right)\)

Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 23:28

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-2x_1^2+4x_1+1+2x_2^2-4x_2-1}{x_1-x_2}\)

\(=\dfrac{-2\left(x_1-x_2\right)\left(x_1+x_2\right)+4\left(x_1-x_2\right)}{x_1-x_2}\)

\(=-2\left(x_1+x_2\right)+4\)

Vì \(x_1;x_2\in\left(1;+\infty\right)\) nên \(\left\{{}\begin{matrix}x_1>1\\x_2>1\end{matrix}\right.\Leftrightarrow x_1+x_2>2\)

\(\Leftrightarrow-2\left(x_1+x_2\right)+4< 0\)

Vậy: Hàm số nghịch biến trên \(\left(1;+\infty\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 8 2018 lúc 3:55

Đáp án là D.

          Sai ở bước III (bảng biến thiên)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2018 lúc 9:15

 

 

Do đó, hàm số đã cho nghịch biến trên tập xác định.

+ Giới hạn:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số

    y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

thu trang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 2 2019 lúc 4:52

y = - x + 2 x + 2

    +) Tập xác định: D = R\{-2}

    +) Ta có: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số nghịch biến trên các khoảng (− ∞ ; −2), (−2; + ∞ )

    +) Tiệm cận đứng x = -2 vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tiệm cận ngang y = -1 vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giao với các trục tọa độ: (0; 1); (2; 0)

Đồ thị

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2017 lúc 7:32

Tập xác định: R\{0}

Hàm số đã cho là hàm số lẻ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12