Biểu thức \(\frac{1}{2+\sqrt{x}}-\frac{1}{2-\sqrt{x}}\) bằng
các bạn giải chi tiết giúp mk nhé. Cảm ơn
1. a> Rút gọn biểu thức sau : A= \(5\left(\frac{1}{\sqrt{2-\sqrt{3}}}+\sqrt{3-\sqrt{5}}-\frac{\sqrt{10}}{2}\right)^2\)+ \(\left(\frac{1}{\sqrt{2+\sqrt{3}}}+\sqrt{3-\sqrt{5}}-\frac{\sqrt{6}}{2}\right)^2\)
b) Cho biểu thức B= \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x+1}}-\frac{8\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}-x-3}{x-1}-\frac{1}{\sqrt{x}-1}\right)\)
Rút gọn biểu thức B và chứng minh B nhỏ hơn hoặc bằng 1 với mọi x lớn hơn hoặc bằng 0 và x khác 1
Cho biểu thức A= $(\frac{1}{\sqrt{x-1}}$+$\frac{1}{\sqrt{x-1}})^{2}$. $\frac{x^{2}-1}{2}$- $\sqrt{x^2-1}$
Rút gọn biểu thức A
\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))
\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)
\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)
\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)
Cho biểu thức A= $(\frac{1}{\sqrt{x-1}}$+$\frac{1}{\sqrt{x+1}})^{2}$. $\frac{x^{2}-1}{2}$- $\sqrt{x^2-1}$
Rút gọn biểu thức A
\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)
1)Cho biểu thức M = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
rút gọn M
2)cho biểu thức A = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
rút gọn A
\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\) rút gọn biểu thức
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\) rút gọn biểu thức
Cho biểu thức A=\(\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A khi \(x=\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)
rút gọn biểu thức:
\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(A=\left(1-\frac{2\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}+a+1}\right)\)với a lớn hơn hoặc bằng 0; a khác 1
Cho biểu thức
M=\(\left(\frac{x+2\sqrt{x}-1}{x\sqrt{x}-1}-\frac{1}{\sqrt{x-1}}\right):\frac{\sqrt{x}-2}{x+\sqrt{x}+1}\)
a)Tìm ĐKXĐ
b)Rút gọn
c)Tìm x để biểu thức M có giá trị bằng 0
1. Rút gọn biểu thức: A= \(\left(\sqrt{7-4\sqrt{3}}-\frac{\sqrt{15}-3}{\sqrt{3}}\right).\left(2+\sqrt{5}\right)\)
2. Cho biểu thức: M= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)( với x \(\ge\)0, x\(\ne\)1)
a, Rút gọn biểu thức M
b, Tìm x để M=2
3.
a, Rút gọn biểu thức: \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{20}-\sqrt{27}\)
b, Với a > 1, cho biểu thức P= \(\left(\frac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\frac{2}{\sqrt{a^2-1}}+1\right)\)
Rút gọn biểu thức P, tìm giá trị của a để P = 2