Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minhchau Trần
Xem chi tiết
Akai Haruma
25 tháng 10 2021 lúc 20:53

Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ

Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên 

Khi đó:

$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$

$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)

Do đó $x,y$ cùng chẵn 

Đặt $x=2k, y=2m$ với $k,m$ nguyên 

a. 

$xy=2k.2m=4km\vdots 4$ (đpcm)

b.

$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$

$\Rightarrow k^2+m^2\vdots 4$

Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.

Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên 

Khi đó:

$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)

Sơn Lê
Xem chi tiết
Nguyễn Vũ Dũng
19 tháng 1 2016 lúc 8:39

Ta có các nhận xét:
a21(mod3)a20(mod3)(1)
a21(mod4)a20(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2y21(mod3)
Nên z21+12(mod3): vô lý nên ta có đpcm.
b) Tương tự câu a, ta cm được tồn tại 1 số trong x;y;z chia hết cho 4. Vậy ta có đpcm. 

Tú Trần
Xem chi tiết
Hoàng Đình Phước
Xem chi tiết
Nguyen Van Thanh
13 tháng 2 2016 lúc 0:28

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  chia hết xy+1

Deucalion
13 tháng 2 2016 lúc 5:32

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

Hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  Chia hết xy+1

guard
Xem chi tiết
Akai Haruma
8 tháng 6 2021 lúc 16:42

Lời giải:

$x^2-3xy+y^2\vdots 25(1)$

$\Rightarrow x^2-3xy+y^2\vdots 5$

$\Leftrightarrow (x+y)^2-5xy\vdots 5$

$\Leftrightarrow (x+y)^2\vdots 5$

$\Rightarrow x+y\vdots 5$

$\Rightarrow (x+y)^2\vdots 25$

$\Leftrightarrow x^2+2xy+y^2\vdots 25(2)$

Từ $(1);(2)\Rightarrow 5xy\vdots 25$

$\Rightarrow xy\vdots 5$

Do đó $x$ hoặc $y$ chia hết cho $5$

Không mất tổng quát giả sử $x\vdots 5$

Do $x^2-3xy+y^2\vdots 25\vdots 5$ nên $y^2\vdots 5$

$\Rightarrow y\vdots 5$

$\Rightarrow xy\vdots 25$

Ta có đpcm.

 

Lê Phương Trà
Xem chi tiết
Lalisa Manobal
Xem chi tiết
Nguyễn Huyền Trâm
22 tháng 5 2020 lúc 12:55

a, Giả sử \(x,y \vdots 3\)

=> \(x^2 ;y^2 \) : 3 dư 1

=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )

Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)

Chứng minh tương tự \(xy \vdots 4\)

\((3;4) =1 => xy \vdots 12\)

Đỗ Việt Hoàng
Xem chi tiết
Đào Thị Ngọc Ánh
Xem chi tiết
Khánh Linh
2 tháng 8 2017 lúc 21:14

1. c, x(y - 3) = -12
Do x; y \(\in Z\Rightarrow y-3\in Z\)
Mà x(y - 13) = -12
=> x; y - 13 \(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có bảng :

x 1 -1 2 -2 3 -3 4 -4 6 -6 12 -12
y - 3 -12 12 -6 6 -4 4 -3 3 -2 2 -1 1
y -9 15 -3 9 -1 7 0 6 1 5 2 4

@Đào Thị Ngọc Ánh

Khánh Linh
2 tháng 8 2017 lúc 20:58

a, (x - 1)(y + 2) = 7
Do x; y \(\in Z\Rightarrow x-1;y+2\in Z\)
Mà (x - 1)(y + 2) = 7
=> x - 1; y + 2 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Nếu \(\left\{{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\) (thỏa mãn)

Vậy các cặp (x; y) thỏa mãn là (2; 5); (0; -9); (8; -1); (-6; -3)
@Đào Thị Ngọc Ánh

Khánh Linh
2 tháng 8 2017 lúc 21:07

1. b, xy - 3x - y = 0
<=> xy - 3x = y
<=> x(y - 3) = y
<=> x(y - 3) - 3 = y - 3
<=> x(y - 3) - (y - 3) = 3
<=> (x - 1)(y - 3) = 3
Do x; y \(\in Z\Rightarrow x-1;y-3\in Z\)
Mà (x - 1)(y - 3) = 3
=> x - 1; y - 3 \(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Nếu \(\left\{{}\begin{matrix}x-1=1\\y-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=-1\\y-3=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y=0\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=3\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=-3\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\) (thỏa mãn)
Vậy các cặp (x; y) thỏa mãn là (2; 6); (0; 0); (4; 4); (-2; 2)
@Đào Thị Ngọc Ánh