Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết

a: \(log\left(x-5\right)< 2\)

=>\(\left\{{}\begin{matrix}x-5>0\\log\left(x-5\right)< log4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-5>0\\x-5< 4\end{matrix}\right.\Leftrightarrow5< x< 9\)

b: \(log_2\left(2x-3\right)>4\)

=>\(log_2\left(2x-3\right)>log_216\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>16\end{matrix}\right.\)

=>2x-3>16

=>2x>19

=>\(x>\dfrac{19}{2}\)

c: \(log_3\left(2x+5\right)< =3\)

=>\(log_3\left(2x+5\right)< =log_327\)

=>\(\left\{{}\begin{matrix}2x+5>0\\2x+5< =27\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x< =11\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< =11\)

d: \(log_4\left(4x-5\right)>=2\)

=>\(log_4\left(4x-5\right)>=log_416\)

=>4x-5>=16 và 4x-5>0

=>4x>=21 và 4x>5

=>4x>=21

=>\(x>=\dfrac{21}{4}\)

e: \(log_3\left(1-3x\right)>3\)

=>\(log_3\left(1-3x\right)>log_327\)

=>\(\left\{{}\begin{matrix}1-3x>0\\1-3x>27\end{matrix}\right.\)

=>1-3x>27

=>\(-3x>26\)

=>\(x< -\dfrac{26}{3}\)

Lê Song Phương
Xem chi tiết
Thái Hưng Mai Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 3:05

a:

ĐKXĐ: x+1>0 và x>0

=>x>0

=>\(log_2\left(x^2+x\right)=1\)

=>x^2+x=2

=>x^2+x-2=0

=>(x+2)(x-1)=0

=>x=1(nhận) hoặc x=-2(loại)

c: ĐKXĐ: x-1>0 và x-2>0

=>x>2

\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)

=>\(\Leftrightarrow x^2-3x+2=8\)

=>x^2-3x-6=0

=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

Nhát Gái
Xem chi tiết
Nguyễn Minh Nguyệt
Xem chi tiết
Lê Văn Quốc Huy
29 tháng 3 2016 lúc 15:44

Điều kiện x>0. Nhận thấy x=2 là nghiệm. 

Nếu x>2 thì

\(\frac{x}{2}>\frac{x+2}{4}>1\)\(\frac{x+1}{3}>\frac{x+3}{5}>1\)

Suy ra 

\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)

\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)

Suy ra vế trái < vế phải, phương trình vô nghiệm.

Đáp số x=2

Sách Giáo Khoa
Xem chi tiết
qwerty
2 tháng 4 2017 lúc 7:54

Hỏi đáp Toán

CÔNG CHÚA THẤT LẠC
9 tháng 4 2017 lúc 10:27

Giải bài 10 trang 147 sgk Giải tích 12 | Để học tốt Toán 12

CÔNG CHÚA THẤT LẠC
9 tháng 4 2017 lúc 10:29

Giải bài 10 trang 147 sgk Giải tích 12 | Để học tốt Toán 12Giải bài 10 trang 147 sgk Giải tích 12 | Để học tốt Toán 12

Nguyễn Tùng Anh
Xem chi tiết
títtt
Xem chi tiết

a: \(log\left(x-2\right)< 3\)

=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)

b: \(log_2\left(2x-1\right)>3\)

=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)

=>2x>10

=>x>5

c: \(log_3\left(-x-1\right)< =2\)

=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)

d: \(log_2\left(2x-3\right)>=2\)

=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)

=>2x-3>=4

=>2x>=7

=>\(x>=\dfrac{7}{2}\)

e: \(log_3\left(2x-7\right)>2\)

=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)

=>2x-7>9

=>2x>16

=>x>8

Nguyễn Việt Lâm
20 tháng 1 lúc 21:16

a.

\(log\left(x-2\right)< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)

b.

\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)

c.

\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)

d.

\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)

e,

\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)

Akai Haruma
20 tháng 1 lúc 21:16

Lời giải:
a. ĐK: $x>2$
$\log(x-2)<3$

$\Leftrightarrow x-2< 10^3$

$\Leftrightarrow x< 1002$

Vậy $2< x< 1002$
b.  ĐK: $x> \frac{1}{2}$

$\log_2(2x-1)>3$

$\Leftrightarrow 2x-1> 2^3$

$\Leftrightarrow 2x> 9$

$\Leftrightarrow x> \frac{9}{2}$

Vậy $x> \frac{9}{2}$

c. ĐK: $x< -1$

$\log_3(-x-1)\leq 2$

$\Leftrightarrow -x-1\leq 3^2=9$

$\Leftrightarrow x+1\geq -9$

$\Leftrightarrow x\geq -10$

Vậy $-10\leq x< -1$

d. ĐK: $x> \frac{3}{2}$

$\log_2(2x-3)\geq 2$

$\Leftrightarrow 2x-3\geq 2^2=4$

$\Leftrightarrow x\geq \frac{7}{2}$

Vậy $x\geq \frac{7}{2}$

e. ĐK: $x> \frac{7}{2}$

$\log_3(2x-7)>2$
$\Leftrightarrow 2x-7> 3^2=9$
$\Leftrightarrow x> 8$

Vậy $x>8$

Đặng Thị Phương Anh
Xem chi tiết
Phương Thảo
6 tháng 4 2016 lúc 21:41

Điều kiện: \(\begin{align} \begin{cases} x&>0\\ 10-x&>0 \end{cases} \end{align}\) <=> 0 < x <10

phương trình đã cho tương đương: log4[x(10 - x)] = 2

                                                           <=> x(10 - x)= 42

                                                            <=> -x2+10x = 16

                                                             <=> x2-10x+16=0

                                                             <=> x = 2 hoặc x = 8

So điều kiện suy ra phương trình có nghiệm: x =2 hoặc x=8