Giải phương trình:
\(\frac{1}{x-1}+\frac{1}{x-2}=\frac{1}{x+2}+\frac{1}{x+1}\)
1.Giải phương trình: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
2.Giải phương trình: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
giải phương trình sau:\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+7}=0\)
Giải phương trình:
\(\frac{1}{x-1}+\frac{1}{x-2}=\frac{1}{x+1}+\frac{1}{x+2}\)
\(\left(\frac{1}{x-2}-\frac{1}{x+2}\right)+\left(\frac{1}{x-1}-\frac{1}{x+1}\right)=0\)
\(\frac{x+2-x+2}{x^2-4}+\frac{x+1-x+1}{x^2-1}=0\)
\(\frac{4}{x^2-4}+\frac{2}{x^2-1}=0\)
\(4x^2-4+2x^2-8=0\)
\(6x^2-12=0\)
\(x^2=2\)
\(x=\sqrt{2}\)
ĐKXĐ: x≠-2,-1,1,2
Ta có :
\(\frac{1}{x-1}+\frac{1}{x-2}=\frac{1}{x+1}+\frac{1}{x+2}\)
<=> \(\frac{1}{x-1}-\frac{1}{x+1}=\frac{1}{x+2}-\frac{1}{x-2}\)
<=>\(\frac{2}{x^2-1}=\frac{-4}{x^2-4}\)
<=> \(2x^2-8=-4x^2+4\)
<=> \(6x^2=12\)
<=> \(x^2=2\)
<=>\(\hept{\begin{cases}x=\sqrt{2}\left(TMĐK\right)\\x=-\sqrt{2}\left(TMĐK\right)\end{cases}}\)
Vậy pt trên có tập nghiệm S={\(\sqrt{2},-\sqrt{2}\)}
k mk nha mn
Giải các phương trình sau:
\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)
ĐKXĐ: \(x\ne\left\{0;-1;-2;-3;-4;-5;-6;-7\right\}\)
\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x+7}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+1}+\frac{1}{x+6}+\frac{1}{x+3}+\frac{1}{x+4}\)
\(\Rightarrow\frac{x+7+x}{x\left(x+7\right)}+\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+6+x+1}{\left(x+1\right)\left(x+6\right)}+\frac{x+4+x+3}{\left(x+3\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x+7}{x^2+7x}+\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+6}+\frac{2x+7}{x^2+7x+12}\)
\(\Rightarrow\left(2x+7\right)\left(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\right)=0\)
mà \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\ne0\)
=> 2x + 7 = 0 => x = -7/2
Vậy x = -7/2
1 giải phương trình và bất phương trình sau
\(\frac{X+2}{X-2}=\frac{2}{X^2-2X}+\frac{1}{X}\)
\(\frac{X+1}{2}-X\le\frac{1}{2}\)
Bài làm:
PT:
đkxđ: \(x\ne0;x\ne2\)
Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)
BPT:
Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)
\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)
\(\Leftrightarrow\frac{-x}{2}\le0\)
\(\Rightarrow-x\le0\)
\(\Rightarrow x\ge0\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)
Vậy \(S=\left\{-1\right\}\)
b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow x+1-2x-1\le0\)
\(\Leftrightarrow-x\le0\)
\(\Leftrightarrow x\ge0\)
Vậy \(x\ge0\)
ĐKXĐ : \(x\ne0;2\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)
Giải phương trình :
\(2^{\frac{1-x^2}{x^2}}-2^{\frac{1-2x}{x^2}}=\frac{1}{2}-\frac{1}{x}\)
Điều kiện \(x\ne0\) nhận thấy
\(\frac{1-2x}{x^2}-\frac{1-x^2}{x^2}=\frac{x^2-2x}{x^2}=1-\frac{2}{x}=2\left(\frac{1}{2}-\frac{1}{x}\right)\)
Do đó phương trình tương đương với
\(2^{\frac{1-x^2}{x^2}}-2^{\frac{1-2x}{x^2}}=\frac{1}{2}\left(\frac{1-2x}{x^2}-\frac{1-x^2}{x^2}\right)\)
\(\Leftrightarrow2^{\frac{1-x^2}{x^2}}+\frac{1}{2}.\frac{1-x^2}{x^2}=2^{\frac{1-2x}{x^2}}+\frac{1}{2}.\frac{1-2x}{x^2}\)
Mặt khác \(f\left(t\right)=2^t+\frac{t}{2}\) là hàm đồng biến trên R
Do đó từ : \(f\left(\frac{1-x^2}{x^2}\right)=f\left(\frac{1-2x}{x^2}\right)\)
Suy ra
\(\frac{1-x^2}{x^2}=\frac{1-2x}{x^2}\)
Từ đó dễ dàng tìm ra được x=2 là nghiệm duy nhất của phương trình
Giải phương trình: \(\frac{1}{x-1}+\frac{1}{x-2}=\frac{1}{x+2}+\frac{1}{x+1}\)
giải phương trình:\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/(x+5).(x+6) = 1/8
<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 - 1/x+6 = 1/8
<=> 1/x+2 - 1/x+6 = 1/8
<=> (x+6-x-2)/(x+2).(x+6) = 1/8
<=> 4/(x+2).(x+6) = 1/8
<=>(x+2).(x+6) = 4 : 1/8 = 32
<=>x^2 + 8x + 12 = 32
<=> x^2+8x+12-32=0
<=>x^2+8x-20=0
<=>(x-2).(x+10)=0
<=> x-2 =0 hoặc x+10 = 0
<=> x=2 hoặc x=-10
giang sinh an lanh $%###Xuyen gam cu chuoi###%$
Giải phương trình :
\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+4x+3}+...+\frac{1}{x^2+199x+9900}=\frac{25}{51}\)
ĐKXĐ \(x\ne0,-1,-2,...,-100\)
\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+...+\frac{1}{x^2+199x+9900}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+...+\frac{1}{x^2+99x+100x+9900}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+....+\frac{1}{x\left(x+99\right)+100\left(x+99\right)}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{25}{21}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{25}{21}\)
\(\Leftrightarrow\frac{x+100-x}{x\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow\frac{100}{x\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow25x^2+2500x=2100\)
\(\Leftrightarrow x^2+100x-84=0\)
\(\Leftrightarrow x^2+2.x.50+50^2-50^2-84=0\)
\(\Leftrightarrow\left(x+50\right)^2-2584=0\)
\(\Leftrightarrow\left(x+50-2\sqrt{646}\right)\left(x+50+2\sqrt{646}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-50+2\sqrt{646}\\x=-50-2\sqrt{646}\end{cases}}\)
Vậy ...
Lê Tài Bảo Châu Vậy ý bạn là \(x^2+4x+3=\left(x+2\right)\left(x+3\right)\)?????
Ban đầu mik cũng có ý tưởng như bạn nhưng thấy nó k đúng với hạng tử thứ 3, xong mới đăng lên đây tìm lời giải khác á~
p/s: nhưng cũng có thể xảy ra trường hợp đề bài sai :((
Giải phương trình:
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{2x+3}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{x+2}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{2}{\frac{2x+3+x+2}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{2}{\frac{3x+5}{2x+3}}=\frac{6}{3x-1}\)
\(\frac{4x+6}{3x+5}=\frac{6}{3x-1}\)
\(\Rightarrow\left(4x+6\right)\left(3x-1\right)=6\left(3x+5\right)\)
\(\Rightarrow12x^2-4x+18x-6=18x+30\)
\(\Rightarrow12x^2-4x+18x-18x=30+6\)
\(\Rightarrow12x^2-4x-36=0\)
\(\Rightarrow3x^2-x-9=0\)
\(\Rightarrow x^2-\frac{1}{3}x-3=0\)
\(\Rightarrow x^2-2.\frac{1}{6}x+\frac{1}{36}-\frac{1}{36}-3=0\)
\(\Rightarrow\left(x-\frac{1}{6}\right)^2-\frac{109}{36}=0\)
\(\Rightarrow\left(x-\frac{1}{6}-\frac{\sqrt{109}}{6}\right)\left(x-\frac{1}{6}+\frac{\sqrt{109}}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{109}}{6}\\x=\frac{1-\sqrt{109}}{6}\end{cases}}\)
làm lại nhé, chỗ kia quy đồng sai
lần này làm theo cách khác
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)
\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{2}{x-\frac{1}{3}}\)
\(\Rightarrow x+\frac{1}{\frac{2x+3}{x+2}}=x-\frac{1}{3}\)
\(\Rightarrow\frac{x+2}{2x+3}=\frac{-1}{3}\)
\(\Rightarrow\left(x+2\right).3=-1.\left(2x+3\right)\)
\(\Rightarrow3x+6=-2x-3\)
\(\Rightarrow3x+2x=-3-6\)
\(\Rightarrow5x=-9\)
\(\Rightarrow x=\frac{-9}{5}\)
vậy \(x=\frac{-9}{5}\)