4x^2-y^2+4x+1
Rút gọn các biểu thức sau:
a) ((1/x^2+4x+4)-(1/x^2-4x+4)):((1/x+2)+(1/x^2-2))
b)((2x/2x-y)-(4x^2/4x^2+4xy+y^2)):((2x/4x^2-y^2)+(1/y-2x))
a,sửa đề : \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)
\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)
b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)
\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)
\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)
1)viết biểu thức dưới dạng tổng 2 bình phương: 4x^2 + y^2 - 4x + 10x + 26
2)tìm x, y: 4x^2 + y^2 - 4x +10y + 26 = 0
a) (3x + 2)² + (4x + (4x - 1)² + (2 + 5x). (2-5x) y - 2 ) ² + 2(x+ x+y = z) (²-y) + (z - y)² Bat 3. Rut gọn các biểu thức sau a) (3x + 2)² + (4x + (4x - 1)² + (2 + 5x). (2-5x) y - 2 ) ² + 2(x+ x+y = z) (²-y) + (z - y)² Bài 4. Tính nhanh, 8.9² + dd² + 22.89. a) (3x + 2)² + (4x + (4x - 1)² + (2 + 5x). (2-5x) y - 2 ) ² + 2(x+ x+y = z) (²-y) + (z - y)² a) (3x + 2)² + (4x
Bạn ghi lại đề đi, khó nhìn quá
Rút gọn biểu thức:
a, 3(x-y)^2-2(x-y)^2+(x-y)(x+y)
b, (x-2)(x^2+2x+4)-x(x-2)(x+2)+4x
c, 2(2x+5)^2-3(4x+1)(1-4x)
d, 4x^2-12+9/9-4x^2
e, x^4+x^3+x+1/x^4-x^3+2x^2-x+1
d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)
a, Vẽ đồ thị hàm số y= \(\sqrt{4x^2-4x+1}\) + \(\sqrt{x^{2^{ }}-4x+4}\)
b, Biện luận theo m số nghiệm của phương trình:
\(\sqrt{4x^{2^{ }}-4x+1}\)+ \(\sqrt{x^{2^{ }}-4x+4}\) = m
\(y=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(x-2\right)^2}=\left|2x-1\right|+\left|x-2\right|\)
\(y=\left[{}\begin{matrix}3x-3\left(\text{với }x\ge2\right)\\3-3x\left(\text{với }x\le\dfrac{1}{2}\right)\\x+1\left(\text{với }\dfrac{1}{2}\le x\le2\right)\end{matrix}\right.\)
Từ đó ta có đồ thị hàm số như sau:
Từ đồ thị ta thấy phương trình \(\sqrt{4x^2-4x+1}+\sqrt{x^2-4x+4}=m\):
- Có đúng 1 nghiệm khi \(m=\dfrac{3}{2}\)
- Có 2 nghiệm phân biệt khi \(m>\dfrac{3}{2}\)
- Vô nghiệm khi \(m< \dfrac{3}{2}\)
38. Chọn câu sai:
A. 16x^2 (x-y) - x + y= (2x-1) (2x+1)(4x^2+1)(x-y)
B. 16x^3 - 54y^5 = 2(2x -3y) (4x^2 + 6xy + 9y^2)
C. 16x^5 - 54y = 2(2x-3y) (2x + 3y)^2
D. 16x^4 (x-y) - x + y = (4x^2 -1 (4x^2 +1) (x-y)
Bài 1. Tính
1. 4x^2 - 12x + 9
2. (x - 1/3)^2
3. (4x -x^2) . (4x + x^2)
4. (3x + 2y)^3
5. 27x^3 - 1/2
6. 8x^3 + 12xy + 6xy^2 + y^3
7. (2x + y) . (4x^2 - 2xy + y^2)
Bài 2. Rút gọn
1. (x - y) - (x + y)^2
2. (2x + 1) . (4x^2 - 2x + 1) - (2x - 1) . (4x^2 + 2x +1)
Bài 3. Tìm A
A = x^2 + y^2 - x + 6y + 10
Em cần gấp lắm ạ :( Mong anh, chị giải dùm em
Rút gọn : \(\left(\frac{1}{2x-y}+\frac{3y}{x^2-4x^2}-\frac{2}{2x+y}\right):\left(\frac{4x^2+y^2}{4x^2-y^2}+1\right)\)
Vẽ đồ thị các hàm số sau:
a) \(y = {x^2} - 4x + 3\)
b) \(y = - {x^2} - 4x + 5\)
c) \(y = {x^2} - 4x + 5\)
d) \(y = - {x^2} - 2x - 1\)
Tham khảo:
a)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 3\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 = - 1.\)
+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì \(a = 1 > 0\)
+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).
Ta vẽ được đồ thị như hình dưới.
b)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = - {x^2} - 4x + 5\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.( - 1)}} = - 2;{y_S} = - {( - 2)^2} - 4.( - 2) + 5 = 9.\)
+ Có trục đối xứng là đường thẳng \(x = - 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì \(a = - 1 < 0\)
+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Ta vẽ được đồ thị như hình dưới.
c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 5\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 5 = 1.\)
+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì \(a = 1 > 0\)
+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Ta vẽ được đồ thị như hình dưới.
d)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = - {x^2} - 2x - 1\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 2)}}{{2.( - 1)}} = - 1;{y_S} = - {( - 1)^2} - 2.( - 1) - 1 = 0\)
+ Có trục đối xứng là đường thẳng \(x = - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì \(a = - 1 < 0\)
+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua gốc tọa độ (0; -1).
Ta vẽ được đồ thị như hình dưới.
1/ (2x+y)(4x^2-2xy +y^2)-(2x-y)(4x^2+2xy+y^2
( 2x + y ) ( 4x2 - 2xy + y2 ) - ( 2x - y ) ( 4x2 + 2xy + y2 )
= 8x3 + y3 - ( 8x3 - y3 )
= 2y3
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)
\(=2y^3\)