Rút gọn phân thức sau:
25x^2-20x+4/25x^2-4
\(\text{rút gọn bằng cách thay số bằng chữ: D=x^10+20x^9+20x^7+....+20x^3+20x^2+20x với x=-24}\)
\(\text{E=x^20+25x^19+25x^18+25x^17+...+25x^3+25x^2+25x+25 với x=-24}\)
Ta có: \(x=-24\Leftrightarrow-x=24\Leftrightarrow1-x=25\)
Thay vào E ta được:
\(E=x^{20}+\left(1-x\right)x^{19}+\left(1-x\right)x^{18}+...+\left(1-x\right)x^2+\left(1-x\right)x+\left(1-x\right)\)
\(E=x^{20}+x^{19}-x^{20}+x^{18}-x^{19}+...+x^2-x^3+x-x^2+1-x\)
\(E=1\)
Phân tích đa thức thành nhân tử \(x^4-25x^2+20x-4\)
Trả lời
Bạn có thể xem thêm trong phần CHTT, còn ko thì mk làm ra luôn choa !
x4-25x2+20x-4
=x4+5x3-2x2-5x3-25x2+10x+2x2+10x-4
=x2(x2+5x-2)-5x(x2+5x-2)+2(x2+5x-2)
=(x2+5x2-2) (x2-5x+2)
Đừng ném đá Mai nx nha, hổm rài ăn đá nhiều quá rồi, huhu !
Mấy cài bài như này rối cực kỳ nên mọi người ai gặp bài này thì áp dụng BĐT \(\left(a-b+c\right)\left(a+b-c\right)=a^2-b^2-c^2+2bc\)cái này vô tình mò ra được
Thanks bạn Pé Shusi nhiều nha !!!!!!! <3
Phân tích đa thức thành nhân tử :
a) x4 - 25x2 + 20x - 4
phân tích đa thức sau thành nhân tử dựa vào pp nhóm hạng tử :
ab(x^2+y^2) - xy(a^2+b^2)
x^4+25x^2+20x-4
CẦN GẤP !
\(ab\left(x^2+y^2\right)-xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2-a^2xy-b^2xy\)
\(=\left(abx^2-b^2xy\right)-\left(a^2xy-aby^2\right)\)
\(=bx\left(ax-by\right)-ay\left(ax-by\right)\)
\(=\left(ax-by\right)\left(bx-ay\right)\)
tìm giá trị nhỏ nhất của biểu thức
C = \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
\(C=\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
\(C=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)
\(C=\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\)
\(C\ge\left|2-5x+5x\right|=2\)
Dấu " = " xảy ra \(\Leftrightarrow\)( 2 - 5x ) . 5x \(\ge\)0
\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge0\\2-5x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x\le0\\2-5x\le0\end{cases}}\)
\(\Leftrightarrow\)\(0\le x\le\frac{2}{5}\)
Vậy GTNN của C là 2 \(\Leftrightarrow\)\(0\le x\le\frac{2}{5}\)
\(C=\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
\(C=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)
\(C=\left|5x-2\right|+\left|5x\right|\)
\(C=\left|2-5x\right|+\left|5x\right|\ge\left|2-5x+5x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2-5x\ge0\\5x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{2}{5}\\x\ge0\end{cases}\Leftrightarrow0\le}x\le\frac{2}{5}}\)
Giải hệ phương trình sau:
\(\hept{\begin{cases}\frac{25x^2-y^2}{20x-4y-3\left(5x+y\right)}=3\\\frac{25x^2-y^2}{2\left(5x-y\right)+10x+2y}=1\end{cases}}\)
Làm được rút gọn cái mẫu xong tự nhiên bí :>
\(\hept{\begin{cases}\frac{25x^2-y^2}{20x-4y-3\left(5x+y\right)}=3\\\frac{25x^2-y^2}{2\left(5x-y\right)+10x+2y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{\left(5x-y\right)\left(5x+y\right)}{4\left(5x-y\right)-3\left(5x+y\right)}=3\\\frac{\left(5x-y\right)\left(5x+y\right)}{2\left(5x-y\right)+2\left(5x+y\right)}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{4\left(5x-y\right)-3\left(5x+y\right)}{\left(5x-y\right)\left(5x+y\right)}=\frac{1}{3}\\\frac{2\left(5x-y\right)+2\left(5x+y\right)}{\left(5x-y\right)\left(5x+y\right)}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{4}{5x+y}-\frac{3}{5x-y}=\frac{1}{3}\\\frac{2}{5x+y}+\frac{2}{5x-y}=1\end{cases}}\)
Đặt: \(\hept{\begin{cases}\frac{1}{5x+y}=a\\\frac{1}{5x-y}=b\end{cases}}\)thì hệ thành
\(\hept{\begin{cases}4a-3b=\frac{1}{3}\\2a+2b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{11}{42}\\b=\frac{5}{21}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{5x+y}=\frac{11}{42}\\\frac{1}{5x-y}=\frac{5}{21}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{441}{550}\\y=-\frac{21}{110}\end{cases}}\)
PS: Bí thì bỏ chứ đăng lên làm gì :3
phân tích đa thức sau thành phân tử
20x^3y^2 -25x^2y^3 +5x^2y^2
bài 2 tìm x
x^3 -25x=0
(x+3)^2 = x+3
mong mn giúp ạ
a) 20x3y2 - 25x2y3 + 5x2y2
= 5x2y2(4x - 5y + 5)
b) Ta có x3 - 25x = 0
<=> x(x2 - 25) = 0
<=> x(x - 5)(x + 5) = 0
<=> x = 0 hoặc x - 5 = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = 5 hoặc x = -5
Vậy x \(\in\left\{0;5;-5\right\}\)là nghiệm phương trình
c) (x + 3)2 = x + 3
<=> (x + 3)2 - (x + 3) = 0
<=> (x + 3)(x + 3 - 1) = 0
<=> (x + 3)(x + 2) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
Vậy x \(\in\left\{-3;-2\right\}\)
phân tích đa thức sau thành nhân tử bằng phương pháp nhóm hạng tử :
a) x^4 + 25x^2 + 20x - 4
b) x^2(x^2 - 6) - x^2 + 9
c) ab(x^2 + y^2) - xy (a^2 + b^2)
Rút gọn biểu thức : a . A = 4 √25x/4 - 8/3 √9x/4 - 4/3x √9x³/64 ( với x ≥ 0 ) b. B = y/2 + 3/4 √1-4y+4y² - 3/2 ( với y ≤ 1/2 )
a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)
\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)
=1/2y+3/4-3/2y-3/2
=-y-3/4