Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thành Phát Nguyễn
Xem chi tiết
Thắng Nguyễn
27 tháng 8 2017 lúc 18:30

\(4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)

ĐK:\(x\in\left[-2;\frac{22}{3}\right]\)

\(\Leftrightarrow4\sqrt{x+2}-\left(\frac{4}{3}x+\frac{16}{3}\right)+\sqrt{22-3x}-\left(-\frac{1}{3}x+\frac{14}{3}\right)=x^2-x-2\)

\(\Leftrightarrow4\frac{x+2-\left(\frac{1}{3}x+\frac{4}{3}\right)^2}{4\sqrt{x+2}+\frac{4}{3}x+\frac{16}{3}}+\frac{22-3x-\left(-\frac{1}{3}x+\frac{14}{3}\right)^2}{\sqrt{22-3x}+\frac{3}{3}x+\frac{14}{3}}=x^2-x-2\)

\(\Leftrightarrow4\frac{\frac{-x^2-x-2}{9}}{4\sqrt{x+2}+\frac{4}{3}x+\frac{16}{3}}+\frac{\frac{-x^2-x-2}{9}}{\sqrt{22-3x}+\frac{3}{3}x+\frac{14}{3}}-\left(x^2-x-2\right)=0\)

\(\Leftrightarrow-\left(x^2-x-2\right)\left(\frac{4\cdot\frac{1}{9}}{4\sqrt{x+2}+\frac{4}{3}x+\frac{16}{3}}+\frac{\frac{1}{9}}{\sqrt{22-3x}+\frac{3}{3}x+\frac{14}{3}}+1\right)=0\)

Pt trong ngoặc to >0

\(\Rightarrow x^2-x-2=0\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vu Nguyen Minh Khiem
27 tháng 8 2017 lúc 12:23

ai mà biết

khổ qua

chịu

hiiiiiiiiiiiii

tran yen
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 19:59

Bạn tự xét ĐKXĐ nhé ^^

Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)-\left[\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right]+\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)=0\)

\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-3-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-2\right)\left(x-1\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x+3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)Tới đây bạn tự làm tiếp ^^

Dài quá ^^

dinh huong
Xem chi tiết
Trần Ngọc Thiên Kim
11 tháng 1 2022 lúc 19:33
Not biếtmdnhdhd
Khách vãng lai đã xóa
Trần Bảo Minh
11 tháng 1 2022 lúc 20:33

Hummmm

Khách vãng lai đã xóa
Hà Nguyễn Bảo Trâm
12 tháng 1 2022 lúc 19:48

Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ

Khách vãng lai đã xóa
Nguyễn Thiện Minh
Xem chi tiết
Lee Yeong Ji
Xem chi tiết

\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)

=>\(\sqrt{x^2-x+1}-x+\sqrt{x^2-9x+9}-x=0\)

=>\(\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}+\dfrac{x^2-9x+9-x^2}{\sqrt{x^2-9x+9}+x}=0\)

=>\(\left(-x+1\right)\left(\dfrac{1}{\sqrt{x^2-x+1}+x}+\dfrac{9}{\sqrt{x^2-9x+9}+x}\right)=0\)

=>-x+1=0

=>x=1

Linh Bui
Xem chi tiết
Akai Haruma
10 tháng 12 2021 lúc 22:52

1/ ĐKXĐ: $4x^2-4x-11\geq 0$

PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$

$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)

$\Leftrightarrow 2a^2-a-6=0$

$\Leftrightarrow (a-2)(2a+3)=0$

Vì $a\geq 0$ nên $a=2$

$\Leftrightarrow \sqrt{4x^2-4x-11}=2$

$\Leftrightarrow 4x^2-4x-11=4$

$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$

$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)

Akai Haruma
10 tháng 12 2021 lúc 22:58

2/ ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$

$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)

$\Leftrightarrow a^2-3a-14=0$

$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)

$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

Akai Haruma
10 tháng 12 2021 lúc 23:01

3. ĐKXĐ: $x^2+3x\geq 0$

PT $\Leftrightarrow 10-(x^2+3x)=\sqrt{x^2+3x}$

$\Leftrightarrow 10-a^2=a$ (đặt $\sqrt{x^2+3x}=a, a\geq 0$)

$\Leftrightarrow a^2+a-10=0$

$\Rightarrow a=\frac{-1+\sqrt{41}}{2}$

$\Leftrightarrow x^2+3x=a^2=\frac{21-\sqrt{41}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{51-2\sqrt{41}})$ (đều tm)

Nguyễn Trung Hiếu
Xem chi tiết
ngonhuminh
17 tháng 1 2017 lúc 16:58

Nhìn không đủ chán rồi không dám động vào

Vũ Như Mai
17 tháng 1 2017 lúc 17:05

Viết đề kiểu gì v @@

Vũ Như Mai
17 tháng 1 2017 lúc 17:12

À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)

tran yen
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 19:52

Giải bằng liên hợp đúng sở trường của mình rồi ^^

Ta có : \(2\sqrt{x^2-7x+10}=x+\sqrt{x^2-12x+20}\) (ĐKXĐ : \(\orbr{\begin{cases}0\le x\le2\\x\ge10\end{cases}}\) )

\(\Leftrightarrow2\left(\sqrt{x^2-7x+10}-2\right)-\left(\sqrt{x^2-12x+20}-3\right)-\left(x+1\right)=0\)

\(\Leftrightarrow2\left(\frac{x^2-7x+10-4}{\sqrt{x^2-7x+10}+2}\right)-\left(\frac{x^2-12x+20-9}{\sqrt{x^2-12x+20}+3}\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\frac{2\left(x-1\right)\left(x-6\right)}{\sqrt{x^2-7x+10}+2}-\frac{\left(x-1\right)\left(x-11\right)}{\sqrt{x^2-12x+20}+3}-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2x-12}{\sqrt{x^2-7x+1}+2}-\frac{x-11}{\sqrt{x^2-12x+20}+3}-1\right)=0\)

Đến đây thì dễ rồi ^^

Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 19:52

Mình có nhầm một chút xíu ở dòng 3 và 4 nhé ^^

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 20:12

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm