\(4^x -10.2^x+16 =0\)
4x-10.2x+16=0
4x-10.2x+16=0
Giải phương trình:
4x- 10.2x + 16 =0
Phương trình \(\Leftrightarrow\left(2^x\right)^2+10.2^x+16=0.\)
Đăt \(y=2^x>0\)
\(\Rightarrow y^2+10y+16=0\)
Giải phương trình bậc 2 tìm y từ đó suy ra x
Ta có 4x-10.2x+16=0
<=> (2x)2-10.2x+25-9=0
<=> (2x-5)2-9=0
<=> (2x-5+3)(2x-5-3)=0
<=> (2x-2)(2x-8)=0
=> 2x-2=0 hoặc 2x-8=0
• 2x-2=0 => 2x=2 => x=1
• 2x-8=0 => 2x=8 => x=3
Vậy ...
Giải các phương trình sau:
a)x^3 - 3x^2 + 4=0
b)x^4 + x^3 - 4x^2 + 5x -3=0
c)4^x - 10.2^x + 16=0
a, pt <=> (x^3+x^2)-(4x^2-4) = 0
<=> (x+1).(x^2-4x+4) = 0
<=> (x+1).(x-2)^2 = 0
<=> x+1=0 hoặc x-2=0
<=> x=-1 hoặc x=2
b, pt <=> (x^4-x^3)+(2x^3-2x^2)-(2x^2-2x)+(3x-3) = 0
<=> (x-1).(x^3+2x^2-2x+3) = 0
<=> (x-1).[(x^3+3x^2)-(x^2+3x)+(3x+3)] = 0
<=> (x-1).(x+3).(x^2-3x+3) = 0
<=> x-1=0 hoặc x+3=0 ( vì x^2-3x+3 > 0 )
<=> x=1 hoặc x=-3
c, pt <=> (4^x-10.2^x+25)-9 =0
<=> (2^x-5)^2-9 = 0
<=> (2^x-5-3).(2^x-5+3) = 0
<=> (2^x-8).(2^x-2) = 0
<=> 2^x-8=0 hoặc 2^x-2=0
<=> x=3 hoặc x=1
Tk mk nha
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2+4=0\)
\(\Leftrightarrow\)\(x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy....
a, pt <=> (x^3+x^2)-(4x^2-4) = 0
<=> (x+1).(x^2-4x+4) = 0
<=> (x+1).(x-2)^2 = 0
<=> x+1=0 hoặc x-2=0
<=> x=-1 hoặc x=2
b, pt <=> (x^4-x^3)+(2x^3-2x^2)-(2x^2-2x)+(3x-3) = 0
<=> (x-1).(x^3+2x^2-2x+3) = 0
<=> (x-1).[(x^3+3x^2)-(x^2+3x)+(3x+3)] = 0
<=> (x-1).(x+3).(x^2-3x+3) = 0
<=> x-1=0 hoặc x+3=0 ( vì x^2-3x+3 > 0 )
<=> x=1 hoặc x=-3
c, pt <=> (4^x-10.2^x+25)-9 =0
<=> (2^x-5)^2-9 = 0
<=> (2^x-5-3).(2^x-5+3) = 0
<=> (2^x-8).(2^x-2) = 0
<=> 2^x-8=0 hoặc 2^x-2=0
<=> x=3 hoặc x=1
Tk mk nha
giải phương trình sau:
a)4x-10.2x+16=0
b) (2x2-3x-1)2-3(2x2-3x-5)-16=0
a, Đặt \(2^x=t,t>0\)
Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)
Nếu t=2 => x=1
nếu t=8=> x=3
Vậy x=...
b, Đặt: \(2x^2-3x-1=t\)
pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)
* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)
Vậy x=...
giải phương trình
\(4^x-10.2^x+16=0\)
các bạn ơi giúp mik với đi
Đặt \(2^x=a>0\Rightarrow4^x=\left(2^2\right)^x=\left(2^x\right)^2=a^2\) pt trở thành:
\(a^2-10a+16=0\Rightarrow\left[{}\begin{matrix}a=8\\a=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=8\\2^x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2^x=2^3\\2^x=2^1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
4x-10.2x+16=0
\(\Leftrightarrow\)2(2x-5.2x)=-16
\(\Leftrightarrow\)2x(1-5)=-8
\(\Leftrightarrow\)-4.2x=-8
\(\Leftrightarrow\)2x=2
\(\Leftrightarrow\)x=1
=> S={1}
giải phương trình:
a, \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\)
b, 4x-10.2x+16=0
c, x(x-1)(x+4)(x+5)=84
a: \(\Leftrightarrow5\sqrt{x+3}-4\sqrt{x+3}=3\sqrt{x-2}-3\sqrt{x-2}+2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
=>x+3=4
hay x=1
c: \(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)
\(\Leftrightarrow\left(x^2+4x\right)^2-5\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow\left(x^2+4x\right)^2-12\left(x^2+4x\right)+7\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow x^2+4x-12=0\)
=>(x+6)(x-2)=0
=>x=-6 hoặc x=2
giải pt:
a, 4x - 10.2x + 16 = 0
b, (2x2 -3x-1)2 - 3(2x2 - 3x -5)-16=0
Ai giúp mk vs đi ạ mk cần gấp ạ
Thanks mn ạ
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
1) Giair phương trình
a) \(\dfrac{2x+3}{5x-3}-\dfrac{3}{4x-6}=\dfrac{2}{5}\)
b) \(x^2+2x-15=0\)
c)\(x^3-4x^2+5x=0\)
d) \(4^x-10.2^x+16=0\)
e) x(x-1)(x-4)(x+5) = 84
b: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
c: \(\Leftrightarrow x\left(x^2-4x+5\right)=0\)
=>x=0
d: \(\Leftrightarrow2\cdot2^x-10\cdot2^x=-16\)
\(\Leftrightarrow-8\cdot2^x=-16\)
\(\Leftrightarrow2^x=2\)
hay x=1