Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
1 tháng 7 2017 lúc 10:16

a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác

c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.

Đa giác. Đa giác đều

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 8 2019 lúc 14:09

secret1234567
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2023 lúc 11:02

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: Xét ΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=16/3(cm)

c: Gọi giao của d với AC là N

d là trung trực của AC

=>d vuông góc AC tại N và N là trung điểm của AC

=>QN//AD

Xét ΔCAD có

N là trung điểm của AC

NQ//AD

=>Q là trung điểm của CD

Xét ΔCDB có

BQ là trung tuyến

M là trọng tâm

=>B,M,Q thẳng hàng

dương phúc thái
11 tháng 8 2023 lúc 11:06

a, Ta có: AB < AC < BC

=> C < B< A

b, Xét tam giác BCD có CA và DK là đường trung tuyến

CA cắt DK tại M

=> M là trọng tâm tam giác BCD

=> MC= 2/3 AC= 2/3.8= 16/3 cm

c, Xét tam giác ABC và tam giác ADC có:

AB = AD

BAC= DAC= 90°AC chung

=> tam giác ABC = tam giác ADC (c.g.c)

=> ACB= ACD (2 góc tương ứng) và BC = DC ( 2 cạnh tương ứng) (1)

KQ là đường trung trực của AC

=> KQ vuông góc với AC tại E

Xét tam giác KCE và tam giác QCE có:

KCE= QCE

EC chung

KEC= QEC=90°

=> tam giác KCE = tam giác QCE (gcg)

=> KC = QC (2 cạnh tương ứng) (2)

Mà K là trung điểm BC (3)

Từ (1), (2) và (3) suy ra Q là trung điểm của DC

Xét tam giác BCD có M là trong tâm

=> M thuộc đường trung tuyến BQ

=> B, M, Q thẳng hàng

Khiêm Nguyễn Gia
Xem chi tiết
uống,giải trí,giáo dục Ă...
Xem chi tiết
Nguyenbichphuong
24 tháng 11 2017 lúc 21:26

bạn chắc viết sai đề rồi

Bùi Thị Minh Phương
Xem chi tiết
Bùi Thị Minh Phương
2 tháng 7 2021 lúc 10:07

giúp mình bài này với 

 

Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 10:09

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

hay \(\widehat{ABH}=\widehat{ACH}\)

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAE}=\widehat{NAE}\)

Xét ΔAME và ΔANE có 

AM=AN(gt)

\(\widehat{MAE}=\widehat{NAE}\)(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)

mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)

nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥MN tại E(1)

Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)

6.8_48 Võ Quốc Vương
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
13 tháng 3 2023 lúc 9:05

A B C H M N

a, Xét tam giác \(\Delta ABH\) và \(\Delta ACH\) có :

\(HB=HC\left(gt\right)\)

\(\widehat{B}=\widehat{C}\left(gt\right)\)

\(AB=AC\left(gt\right)\)

= > \(\Delta ABH=\Delta ACH\left(c-g-c\right)\)

b, M là trung điểm của cạnh AC = > MA = 1/2 AC ( 1 )

 N là trung điểm của cạnh AB = > NA = 1/2 AB  ( 2 )

Từ ( 1 ) , ( 2 ) = > MA = NA   ( Do AB = AC )

Mà tam giác ABH = tam giác ACH ( câu a, )

= > \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng )

Xét \(\Delta ANH\) và \(\Delta AMH\) có :

\(AN=AM\left(cmt\right)\)

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

AH chung 

= > \(\Delta ANH=\Delta AMH\left(c-g-c\right)\)

= > HN = HM ( 2 cạnh tương ứng )

 

 

 

when the imposter is sus
13 tháng 3 2023 lúc 9:05

a) Xét hai tam giác ABH và ACH ta có:

- AB = AC (vì ABC là tam giác cân)

- HB = HC (vì H là trung điểm của BC)

\(\widehat{B}=\widehat{C}\) (vì ABC là tam giác cân)

Vậy \(\Delta ABH=\Delta ACH\) (c.g.c)

b) Xét hai tam giác NBH và MCH ta có:

- NB = MC (vì AB = AC, M là trung điểm của AC và N là trung điểm của AB)

- HB = HC (đã chứng minh trên)

\(\widehat{B}=\widehat{C}\) (đã chứng minh trên)

Suy ra \(\Delta NBH=\Delta MCH\) (c.g.c)

Khi đó HN = HM (vì hai cạnh tương ứng)

Bụng ღ Mon
Xem chi tiết
Phan Đình Hoàng
14 tháng 4 2019 lúc 15:47

Áp dụng định lý Pitago trong tam giác vuông ABC ta có: (vì AB = AC)

Từ đây suy ra .

Lại có M là trung điểm của AC nên .

Gọi I là trung điểm của BC, G là giao điểm của AI và BM, suy ra G là trọng tâm tam giác ABC, suy ra BM = 3GM     (1).

Do ABC là tam giác vuông nên AI = IB = IC, do đó tam giác IAC là tam giác cân tại I, suy ra                          (2)

Lại có AM = MC (3).

    (4)

 Từ (2), (3) và (4) suy ra  (c.g.c)

Suy ra GM = NM (5). Từ (1) và (5) suy ra BM = 3NM (đpcm).

haitani anh em
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 14:21

a: Xét ΔNAB có

NM vừa là đường cao, vừa là trung tuyến

nên ΔBAN cân tại N

b: Xét ΔBAC có

M là trung điểm của BA

MN//AC

Do đó: N là trung điểm của BC